Careers360 Logo
Equilibrium constant

Equilibrium constant

Edited By Shivani Poonia | Updated on Sep 18, 2024 10:06 PM IST

INTRODUCTION

The concept of equilibrium constant was developed by the work of various scientists. Cato Maximilian Gulberg and Peter Waage as they worked on the law of mass action they are also working on the concept of the equilibrium constant in their formulation they proposed the rate of reaction is proportional to the concentration of the reactant and at equilibrium the ratio of concentration of product to reactant is constant. Futher another scientist Jacobus Henricus Vant Hoff developed the theory by relating the equilibrium constant to the temperature and predicting the impact of temperature change on the position of equilibrium.

In general terms, the equilibrium constant is defined for the chemical reaction and is used to calculate the concentration of reactant and product at equilibrium. There are different types of equilibrium constants such Kc and Kp they both have different uses. Use of Kc when the concentration is used or measured in terms of molarity (mole per liter ) this equilibrium constant is used. When the reaction occurs in the gaseous phase instead of molarity the concentration is measured in the form of partial pressure and temperature is taken in kelvin here the equilibrium constant is taken as Kp. The equilibrium constant is temperature dependent according to vant Hoff. Vant hoff gives an equation where the equilibrium constant depends on temperature. Therefore the unit of the equilibrium constant also depends upon the reaction and can vary from reaction to reaction. The equilibrium constant has several applications it is used to predict the extent of reaction, and direction of equilibrium, and also in calculating the concentration at equilibrium.


EQUILIBRIUM CONSTANT


It is the ratio of the rate of forward and backward reaction at a particular temperature or it is the ratio of active masses of the reactants to that of active masses of products at a particular temperature raised to their stoichiometric coefficients. It is denoted by Kc or Kp. The distinction between Keq and Kc is that the expression of Keq involves all the species (whether they are pure solids, pure liquids, gases, solvents or solutions) while the expression Kc involves only those species whose concentration is a variable (gases and solution). It means Kc is a devoid of pure components (like pure solids and pure liquids) and solvents.

Let us look at the definition of Equilibrium constant in terms of concentration and partial pressure

(1) Equilibrium constant in Term of Concentration

For a reaction:

mA+nB⇌pC+qDrforward ∝[A]m[B]n=Kf[A]m[B]nrbackward ∝[C]p[D]q=Kb[C]p[D]q


We know that at equilibrium

rf=rbKf[A]m[B]n=Kb[C]p[D]qKfKb=[C]p[D]q[A]m[B]n (at constant temperature) KfKb=[C]p[D]q[A]m[B]n=Kc

The above expression gives us the value of Kc as the activity or the active mass is expressed in terms of the concentrations (c) or the molarity




(2) Equilibrium constant in terms of Partial pressure

In this case, the equilibrium constant is known as Kp. It is applicable only for gaseous systems.
For the reaction:
mA+nB⇌pC+qDrforward ∝PAmPBn=Kf1PAmPBnrbackward ∝PCpPDq=Kb1PCpPDq



At equilibrium

rf=rbKf1PAmPBn=Kb1PCpPDqKP=Kf1 Kb2=PCpPDqPAmPBn



The above expression gives us the value of KP as the activity is expressed in terms of partial pressures.

Note: This is generally used for gaseous systems or systems where gases are in equilibrium with liquids or solids



Some Solved Examples

1.The equilibrium constant (KC) for the reaction N2( g)+O2( g)→2NO(g) at temperature T is 4×10−4. The value of KC for the given reaction at the same temperature is :

NO(g)→12 N2( g)+12O2( g)

1)0.02

2)2.5 x 10 2

3)4 x 10 -4

4) (correct)50

Solution

As we discussed in the concept

The equilibrium constant for the reverse reaction -

The equilibrium constant for the reverse reaction is the inverse of the equilibrium constant for the reaction in the forward direction.

N2( g)+O2( g)→2NO(g)→(i)Kc=4×10−4


By multiplying the equation (i) by 12

12 N2( g)+12O2( g)→NO(g)→ (ii) Kc′=Kc=4×10−4=2×10−2


By reversing the equation (ii), we get

NO(g)→12 N2( g)+12O2( g)Kc′′=1 Kc′=12×10−2=50

Hence, the answer is the option (4).

2. A vessel at 1000 K contains CO2 with a pressure of 0.5 atm. Some of the CO2 is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is

1) (correct)1.8 atm

2)3 atm

3)0.3 atm

4)0.18 atm


Solution

Given,

CO2( g)+C(s)⇋2CO(g)

Initial pressure 0.5 atm 0 0

Pressure at equilibrium 0.5-x 2x

Total Pressure = 0.5 - x + 2x = 0.8

x = 0.3

k=(pCO)2(pCO2)k=(0.6)20.2=1.8 atm



Hence, the answer is the option (1)


2.Solid ammonium carbamate dissociates to give ammonia and carbon dioxide as follows. NH2COONH4( s)⇌2NH3( g)+CO2( g) At equilibrium, ammonia is added such that partial pressures of \mathrm{NH_{3}} now equals the original total pressure. Calculate the ratio of the total pressure now to the original total pressure.

1) (correct)3127

2)6040

3)319

4)6227

Solution

The reaction:-

Initial NH2COONH4( s)⇌2NH3( g)2P+CO2( g)P


Kp=(PNH3)2(PCO2)PT( initial )=3PNH2COONH4( s)⇌2NH3( g)+CO2( g) Initial KP=(3P)2(P′)………… (ii)

From eq (I) and (ii)

(2P)2(P)=(3P)2(P′)P′=4P9

PT( new )PT( old )=3P+P′3P=3P+4P93P=3127

Hence, the answer is the option (1).

3. For the hypothetical reactions, the equilibrium constant (K) values are given:

A⇌B;K1=2;B⇌C;K2=4;C⇌D;K3=3
The equilibrium constant (K) for the reaction A⇌D is:

1)12

2) (correct)24

3)6

4)9

Solution

The required reaction A⇌D can be obtained by adding all the given reactions

We know that the Equilibrium constants get multiplied when the equations are added

∴K=K1×K2×K3⇒K=2×4×3=24


Hence, the answer is the option (2).

4.Value of equilibrium constant depends upon:

1)Temperature

2)Method of expressing activity or active mass

3) (correct)Both 1 and 2

4)Volume

Solution

Equilibrium constants are changed if you change the temperature of the system. Kc or Kp is constant at a constant temperature, but they vary as the temperature changes.

  • The equilibrium constant K is determined by the activities of the components in the equilibrium expression.

  • The values of Kc and Kp can be different in magnitude as well as dimensions.

Hence, the answer is the option (3).

4.In the figure shown below reactant A (represented by square) is in equilibrium with product B (represented by circle). The equilibrium constant is :

1)1

2)4

3)8

4) (correct)2

Solution

Now,

A⇋B

Kc=[B][A]

The concentration of [B] as represented by circle = 11

and the concentration of [A] as represented by square = 6

Therefore, the value of the equilibrium constant is near 2.

Hence, Option number (4) is c

5.For the following three reactions (i), (ii) and (iii), equilibrium constants are given

(i) CO(g)+H2O(g)⇌CO2( g)+H2( g);K1
(ii) CH4( g)+H2O(g)⇌CO(g)+3H2( g);K2
(iii) CH4( g)+2H2O(g)⇌CO2( g)+4H2( g);K3



Which of the following relation is correct ?

1)K3⋅K23=K12

2)K1K2=K3

3)K2 K3=K1

4) (correct)K3=K1 K2

Solution

CO(g)+H2O(g)⇌CO2( g)+H2( g)K1=[CO2][H2][CO][H2O]………..(i)CH4( g)+H2O(g)⇌CO(g)+3H2( g)K2=[CO][H2]3[CH4][H2O]………..( ii )CH4( g)+2H2O(g)⇌CO2( g)+4H2( g)K3=[CO2][H2]4[CH4][H2O]2……….( iii )






From equations (i), (ii) and (iii); K3=K1×K2

Hence, the answer is the option (4).

Summary

The equilibrium constant has several applications in our lives it impacts our lives by various means such as in the environment it is used to control pollution as it is used to design the system for our air and water purification by optimizing conditions to remove pollutants effectively. It is also used for drug formulation as an equilibrium constant used to design and optimize drug formulation, ensuring that medications are effective and stable. it also helps in understanding the process of how drugs interact with the body. It is also used as a preservative in the food industry. Equilibrium constants have also used processes like fermentation and canning to control and optimize reactants that preserve food and enhance flavour. The equilibrium constant has also many uses like as a cleansing agent in our daily life the effectiveness of soap and detergent, which involve chemical reactions for cleaning and this can be optimized by using the Equilibrium constant. Because the equilibrium helps in maintaining the reaction concentration.


Articles

Back to top