Careers360 Logo
Relation between Kp and Kc

Relation between Kp and Kc

Edited By Shivani Poonia | Updated on Oct 04, 2024 09:53 PM IST

The equilibrium constants ( Kp ) and ( Kc ) are fundamental concepts in chemical equilibrium, describing the relationship between the concentrations or partial pressures of reactants and products in a chemical reaction at equilibrium. In chemical thermodynamics, the equilibrium constants ( Kp ) and ( Kc ) provide crucial information about the position of equilibrium for a reaction.

Kc is the equilibrium constant expressed in terms of the concentrations of reactants and products, while ( Kp ) is expressed in terms of the partial pressures of gases. The relationship between ( Kp ) and ( Kc ) is particularly important for understanding how changes in pressure and temperature affect chemical equilibria.

The specific relationship between ( Kp ) and ( Kc ) was derived later as the field of chemical thermodynamics evolved. The equilibrium constants ( Kp ) and ( Kc ) are extremely helpful in various ways. They provide insight into the extent to which a reaction will proceed to form products or remain as reactants. A large value of ( Kc ) or ( Kp ) indicates a reaction that favors the formation of products, while a small value suggests a reaction that favors the reactants.

Relation Between Kp And Kc

Let us suppose we react:
$
\mathrm{n}_1 \mathrm{~A}(\mathrm{~g})+\mathrm{n}_2 \mathrm{~B}(\mathrm{~g}) \leftrightharpoons \mathrm{n}_3 \mathrm{C}(\mathrm{g})+\mathrm{n}_4 \mathrm{D}(\mathrm{g})
$

The equilibrium constant $\mathrm{K}_{\mathrm{c}}$ for this reaction is given as:
$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{\mathrm{n}_3}[\mathrm{D}]^{\mathrm{n}_4}}{[\mathrm{~A}]^{\mathrm{n}_1}[\mathrm{~B}]^{\mathrm{n}_2}}
$

For the reaction:
$
\mathrm{n}_1 \mathrm{~A}(\mathrm{~g})+\mathrm{n}_2 \mathrm{~B}(\mathrm{~g}) \leftrightharpoons \mathrm{n}_3 \mathrm{C}(\mathrm{g})+\mathrm{n}_4 \mathrm{D}(\mathrm{g})
$

The equilibrium constant $\mathrm{K}_{\mathrm{p}}$ is given as:
$
K_p=\frac{\left(P_C\right)^{n_3}\left(P_D\right)^{n_4}}{\left(P_A\right)^{n_1}\left(P_B\right)^{n_2}}
$

Now, from the Ideal gas Equation
$
\mathrm{PV}=\mathrm{nRT}
$

$
\begin{aligned}
& \mathrm{P}=\frac{\mathrm{n}}{\mathrm{V}} \mathrm{RT} \\
& \mathrm{P}=\mathrm{CRT}
\end{aligned}
$

Putting the value of $P$ in terms of $C$ in the expression for $K_P$
$
\begin{aligned}
& \mathrm{K}_{\mathrm{p}}=\frac{[\mathrm{C}]^{\mathrm{n}_3}(\mathrm{RT})^{\mathrm{n}_3}[\mathrm{D}]^{\mathrm{n}_4}(\mathrm{RT})^{\mathrm{n}_4}}{[\mathrm{~A}]^{\mathrm{n}_1}(\mathrm{RT})^{\mathrm{n}_1}[\mathrm{~B}]^{\mathrm{n}_2}(\mathrm{RT})^{\mathrm{n}_2}} \\
& \mathrm{~K}_{\mathrm{P}}=\frac{[\mathrm{C}]^{\mathrm{n}_3}[\mathrm{D}]^{\mathrm{n}_4}}{[\mathrm{~A}]^{\mathrm{n}_1}[\mathrm{~B}]^{\mathrm{n}_2}}[\mathrm{RT}]^{\left.\mathrm{n}_3+\mathrm{n}_4\right)-\left(\mathrm{n}_1+\mathrm{n}_2\right)}
\end{aligned}
$

Putting $\Delta \mathrm{n}_{\mathrm{g}}=\left(\mathrm{n}_3+\mathrm{n}_4\right)-\left(\mathrm{n}_1+\mathrm{n}_2\right)$, we have
$
\mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta \mathrm{n}_5}
$

It can be seen that:
- When $\Delta \mathrm{ng}_{\mathrm{g}}=0$, then $\mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}$
. When $\Delta \mathrm{ng}_{\mathrm{g}}>0$, then $\mathrm{K}_{\mathrm{P}}>\mathrm{K}_{\mathrm{Q}}$
When $\Delta \mathrm{n}_{\mathrm{g}}<0$, then $\mathrm{K}_{\mathrm{P}}<\mathrm{K}_{\mathrm{C}}$

Recommended topic video on(Relation between Kp and Kc)

Some Solved Examples

Example 1. An amount of solid NH4HS is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm pressure. Ammonium hydrogen sulphide decomposes to yield NH3 and H2S gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.85 atm. The equilibrium constant forNH4HS decomposition at this temperature is

1)0.30

2)0.18

3) 0.17

4)0.11 (correct)

\begin{aligned}
&\text { Solution }\\
&\begin{array}{lccc}
& \mathrm{NH}_4 \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_3(\mathrm{~g})+\mathrm{H}_2 \mathrm{~S}(\mathrm{~g}) \\
\text { Initial pressure } & 0 & 0.5 & 0 \\
\text { At eq. } & 0 & 0.5+\mathrm{x} & \mathrm{x}
\end{array}
\end{aligned}

Total pressure = 0.5 + 2x = 0.84

\therefore x = 0.17 atm

Now,
$
\begin{aligned}
& \mathrm{K}_{\mathrm{p}}=\mathrm{pNH}_3 \times \mathrm{pH}_2 \mathrm{~S} \\
& \mathrm{~K}_{\mathrm{p}}=(0.5+0.17)(0.17)=0.11 \mathrm{~atm}^2
\end{aligned}
$

Example 2. Two solids dissociate as follows

$\begin{aligned} & A(s) \rightleftharpoons B(g)+C(g) ; K_{p 1}=x a t m^2 \\ & D(s) \rightleftharpoons C(g)+E(g) ; K_{p 2}=y a t m^2\end{aligned}$

The total pressure when both the solids dissociate simultaneously is :

1) $(x+y) \operatorname{atm} 2)$
2) $\sqrt{x+y} \mathrm{~atm}$
3) $x^2+y^2 a t m$
4) $($ correct) $2(\sqrt{x+y}) \mathrm{atm}$

Solution

Relation between pressure and concentration -
$
P V=n R T
$
or $P=\frac{n}{V} R T$
or $P=C R T$
$R=0.0831$ bar inter $/ \mathrm{mol} K$

- wherein

P is pressure in Pa. C is concentration in mol/liter. T is the temperature in kelvin

As we have learned in total pressure at equilibrium
$
\begin{aligned}
& A_{(s)} \rightleftharpoons B_{(g)}+C_{(g)} K_p=\text { xatm }^2 \\
& D_{(s)} \rightleftharpoons C_{(g)}+E_{(g)} K p_2=\text { yatm }^2 \\
& p_1+p_2 \quad p_2 \\
& K p_1=p_1\left(p_1+p_2\right) \quad \text { Kp } p_2=p_2\left(p_1+p_2\right) \\
& K p_2=p_2\left(p_1+p_2\right)^2 \\
& x+y=\left(p_{1+} p_2\right)^2 \\
& \left(p_{1+} p_2\right)=\sqrt{x+y} \\
& P_{\text {total }}=P_b+P_c+P_e \\
& =2\left(p_{1+} p_2\right)=2 \sqrt{x+y}
\end{aligned}
$

Hence, the answer is the option (4).


Example 3. Consider the reaction $\mathrm{N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_3(\mathrm{~g})$. The equilibrium constant of the above reaction is $K_p$. If pure ammonia is left to dissociate, the partial pressure of ammonia at equilibrium is given by ( Assume that $P_{N H_3}<<p_{\text {total }}$ at equilibrium )

$\begin{aligned} & \text { 1) (correct) } \frac{3^{\frac{3}{2}} K_p^{\frac{1}{2}} P^2}{16} \\ & \text { 2) } \frac{3^{\frac{3}{2}} K_p^{\frac{1}{2}} P^2}{4} \\ & \text { 3) } \frac{K_p^{\frac{1}{2}} P^2}{4} \\ & \text { 4) } \frac{K_P^{\frac{1}{2}} P^2}{16}\end{aligned}$

Solution
$
\mathrm{N}_2+3 \mathrm{H}_2 \rightleftharpoons 2 \mathrm{NH}_3 \quad \text { Equilibrium Constant }=K_p
$

Now,
$
\begin{aligned}
& 2 \mathrm{NH}_3 \rightleftharpoons \mathrm{N}_2+3 \mathrm{H}_2 ; K_p^{\prime}=\frac{1}{K_p} \\
& P_{\text {total }}=P=P_{\mathrm{N}_2}+P_{\mathrm{H}_2}+P_{\mathrm{NH}_3}
\end{aligned}
$

Due to $P_{\mathrm{NH}_3}<<P_{\text {Total }}$
$
\mathrm{P}_{\text {total }} \approx \mathrm{P}_{\mathrm{N}_2}+\mathrm{P}_{\mathrm{H}_2}
$

Total moles are 4,1 of $\mathrm{NH}_3$, and 3 of $\mathrm{H}_2$.
Partial Pressure of $\mathrm{A}=\frac{\text { moles of } \mathrm{A}}{\text { Total moles }} \times$ Total Pressure

$\begin{aligned} & \mathrm{P}_{\mathrm{N}_2}=\frac{1}{4} \times \mathrm{P} \text { and } \mathrm{P}_{\mathrm{H}_2}=\frac{3}{4} \times \mathrm{P} \\ & \frac{1}{K_P}=\frac{P_{N_2}\left(P_{H_3}\right)^3}{\left(P_{N_3}\right)^2}=\frac{\left(\frac{P}{4}\right)\left(\frac{3 P}{4}\right)^3}{\left(P_{N H_3}\right)^2} \\ & \left(P_{N H_3}\right)^2=\frac{3^3 P^4}{4^4} K_p\end{aligned}$

Example 4. For the reaction, $\mathrm{CO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{COCl}_{2(\mathrm{~g})}$ the value of $\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}$ is equal to

1) $\left(\right.$ correct) $\frac{1}{R T}$
2)RT
3) $\sqrt{\mathrm{RT}}$
4) 1.0

Solution

Relation between $K p$ and $K_c-K_p=K_c(R T)^{\triangle n}$
Now, for the given reaction, $\mathrm{CO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{COCl}_{2(\mathrm{~g})}$
$
\begin{aligned}
& \Delta \mathrm{n}=-1 \\
& \therefore \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{-1}
\end{aligned}
$

Thus $\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}=\frac{1}{\mathrm{RT}}$

Hence, the answer is the option (1).

Example 5. For the reaction,
$\mathrm{SO}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{SO}_{3(\mathrm{~g})}$ if $\mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\mathrm{x}}$ where the symbols have the usual meaning then the value of x is

1) -1
2) (correct) $-\frac{1}{2}$
3) $\frac{1}{2}$
4) 1

Solution

We know that

Relation between Kp and Kc -
$
\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}
$

According to the data given in the question
$
\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta \mathrm{n}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\mathrm{x}}
$

For the given reaction
$
\begin{aligned}
& \mathrm{SO}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_3(\mathrm{~g}) \\
& \Delta \mathrm{n}=1-\frac{3}{2}=-\frac{1}{2}
\end{aligned}
$

Hence, the value of $x$ is $-\frac{1}{2}$

Hence, the answer is an option (2).

Summary

The relationship between ( Kc ) (the equilibrium constant for concentration) and ( Kp ) (the equilibrium constant for partial pressures) is crucial in understanding chemical equilibria, especially for reactions involving gases. This relation has various benefits such as predicting reaction behavior: Knowing the values of ( Kc ) and ( Kp ) helps to predict the direction and extent of a reaction under varying conditions.

Articles

Back to top