Natural Language Processing (NLP) in Python with 8 Projects

BY
Udemy

Mode

Online

Fees

₹ 499 3499

Quick Facts

particular details
Medium of instructions English
Mode of learning Self study
Mode of Delivery Video and Text Based

Course and certificate fees

Fees information
₹ 499  ₹3,499
certificate availability

Yes

certificate providing authority

Udemy

The syllabus

Welcome

  • Course Overview
  • Reviews UPDATE
  • Introduction to NLP
  • Course FAQs

Installation & Setup

  • Course Installation
  • Local Installation Steps
  • Links to Notebooks (As taught in Lectures)
  • Links to Notebooks (More explanatory notebook for refrence)

Basics of Natural Language Processing

  • Section : Introduction
  • Tokenization Basic Part - 1
  • Tokenization Basic Part - 2
  • Tokenization Basic Part - 3
  • Stemming & Lemmatization - 1
  • Stemming & Lemmatization - 2
  • Stop Words
  • Vocabulary and Matching Part - 1
  • Vocabulary and Matching Part - 2 (Rule Based)
  • Vocabulary and Matching Part - 3 (Phrase Based)
  • Parts of Speech Tagging
  • Named Entity Recognition
  • Sentence Segmentation
  • NLP Basics

Project 1 : Spam Message Classification

  • Business Problem & Dataset
  • Data Exploration & Preprocessing
  • Split Data in Training & Testing
  • Apply Random Forest
  • Apply Support vector Machine (SVM)
  • Predict Testing Data both model
  • Quiz

Project 2 : Restaurant Review Prediction (Good or bad)

  • Business Problem
  • Cleaning Text Data with NLTK - 1
  • Cleaning Text Data with NLTK - 2
  • Bag of Word Model
  • Apply Naive Bayes Algorithm

Project 3 : IMDB, Amazon and Yelp review Classification

  • Review Classification Part -1
  • Review Classification Part - 2

Project 4 : Automated Text Summarization

  • Importing the libraries and Dataset
  • Create Word Frequency Counter
  • Calculate Sentence Score
  • Extract summary of document

Project 5 : Twitter sentiment Analysis

  • Setting up Twitter Developer application
  • Fetch Tweet from Tweeter server
  • Find Setiment from Tweets

Deep Learning Basics

  • The Neuron
  • Activation Function
  • Cost Function
  • Gradient Descent and Back-Propagation

Word Embeddings

  • Introduction to Word Embedding
  • Train Model for Embedding - I
  • Train Model for Embedding - II
  • Embeddings with Pretrained model
  • Word Embeddings

Project 6 : Text Classification with CNN

  • Convolutional Neural Network Part 1
  • Convolutional Neural Network Part 2
  • Spam Detection with CNN - I
  • Spam Detection with CNN - II

Project 7 : Text Classification with RNN

  • Introduction to Recurrent Neural Networks
  • Vanishing Gradient Problem
  • LSTM and GRU
  • Spam Detection with RNN

Project 8 : Automatic Text Generation using TensorFlow, Keras and LSTM

  • Text Generation Part I
  • Text Generation Part II

FastText Library for Text Classification

  • fasttext Installation steps [Video]
  • fasttext Installation steps [Text]
  • Virtual Box Installation
  • Create Linux Virtual Machine
  • Install fasttext library
  • Text Classification with Fasttext

Data analysis with Numpy

  • Introduction to NumPy
  • Numpy Arrays Part 1
  • Numpy Arrays Part 2
  • Numpy Arrays Part 3
  • Numpy Indexing and Selection Part 1
  • Numpy Indexing and Selection Part 2
  • Numpy Operations

Data analysis with Pandas

  • Pandas Introduction
  • Pandas Series
  • DataFrames Part 1
  • DataFrames Part 2
  • DataFrames Part 3
  • Missing Data
  • Groupby Method
  • Merging, Joining and Concatenating DataFrames
  • Pandas Operations
  • Reading and Writing Files in Pandas

Data Visualization with Matplotlib

  • Matplotlib Part 1 - Functional Method
  • Matplotlib Part 1 - Object Oriented Method
  • Matplotlib Part 2 - Subplots Method
  • Matplotlib Part 2 - Figure size, Aspect ratio and DPI
  • Matplotlib Part 3
  • Matplotlib Part 4

Appendix

  • Text File Processing - I
  • Text File Processing - II
  • Text File Processing - III
  • Text File Processing - IV
  • Working with PDF File - I

Trending Courses

Popular Courses

Popular Platforms

Learn more about the Courses

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

Careers360 App
150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books