PyTorch for Deep Learning and Computer Vision

BY
Simpliv Learning

Mode

Online

Fees

$ 199 999

Quick Facts

particular details
Medium of instructions English
Mode of learning Self study
Mode of Delivery Video and Text Based

Course and certificate fees

Fees information
$ 199  $999
certificate availability

Yes

certificate providing authority

Simpliv Learning

The syllabus

Introduction

Getting Started

  •  Finding the codes (Github)
  •  A Look at the Projects 

Intro to Tensors – PyTorch

  •  Intro to Tensors – PyTorch - Intro
  •  1 Dimensional Tensors
  •  Vector Operations
  •  2 Dimensional Tensors
  •  Slicing 3D Tensors
  •  Matrix Multiplication
  •  Gradient with PyTorch
  •  Intro to Tensors – PyTorch: Outro

Linear Regression – PyTorch

  •  Linear Regression – PyTorch - Intro
  •  Making Predictions
  •  Linear Class
  •  Custom Modules
  •  Linear Regression – PyTorch : Creating Dataset
  •  Loss Function
  •  Gradient Descent
  •  Mean Squared Error
  •  Training - Code Implementation
  •  Linear Regression – PyTorch: Outro

Perceptrons – PyTorch

  •  Perceptrons – PyTorch: Intro
  •  What is Deep Learning
  •  Perceptrons – PyTorch : Creating Dataset
  •  Perceptron Model
  •  Model Setup
  •  Model Training
  •  Model Testing
  •  Perceptrons – PyTorch: Outro

Deep Neural Networks – PyTorch

  •  Deep Neural Networks – PyTorch: Intro
  •  Non-Linear Boundaries
  •  Architecture
  •  Feedforward Process
  •  Error Function
  •  Backpropagation
  •  Code Implementation
  •  Testing Model
  •  Deep Neural Networks – PyTorch: Outro

Image Recognition – PyTorch

  •  Image Recognition – PyTorch: Intro
  •  MNIST Dataset
  •  Training and Test Datasets
  •  Image Recognition – PyTorch : Image Transforms
  •  Neural Network Implementation
  •  Neural Network Validation
  •  Final Tests
  •  A note on adjusting batch size
  •  Image Recognition – PyTorch: Outro

Convolutional Neural Networks – PyTorch

  •  Convolutions and MNIST
  •  Convolutional Layer
  •  Convolutions II
  •  Pooling
  •  Fully Connected Network
  •  Neural Network Implementation with PyTorch
  •  Model Training with PyTorch

CIFAR 10 Classification – PyTorch

  •  The CIFAR 10 Dataset
  •  Testing LeNet
  •  Hyperparameter Tuning
  •  Data Augmentation

Transfer Learning – PyTorch

  •  Pre-trained Sophisticated Models
  •  AlexNet and VGG16

Style Transfer – PyTorch

  •  VGG 19
  •  Style Transfer – PyTorch : Image Transforms
  •  Feature Extraction
  •  The Gram Matrix
  •  Optimization
  •  Style Transfer with Video

Appendix A - Python Crash Course

  • Appendix A - Python Crash Course: Overview
  •  Anaconda Installation (Mac)
  •  Anaconda Installation Windows
  •  Jupyter Notebooks
  •  Arithmetic Operators
  •  Variables
  •  Numeric Data Types
  •  String
  •  Booleans
  •  Methods
  •  Lists
  •  Slicing
  •  Membership Operator
  •  Mutability
  •  Mutability II
  •  Common Functions & Methods
  •  Tuples
  •  Sets
  •  Dictionaries
  •  Compound Data Structures
  •  Part 1 – Outro
  •  Part 2 - Control Flow
  •  If, else
  •  elseif
  •  Complex Comparisons
  •  For Loops
  •  For Loops II
  •  While Loops
  •  Break
  •  Part 2 – Outro
  •  Part 3 – Functions
  •  Functions
  •  Scope
  •  Doc Strings
  •  Lambda and Higher Order Functions
  •  Part 3 – Outro

Appendix B - NumPy Crash Course

  •  Appendix B - NumPy Crash Course: Overview
  •  Arrays vs Lists
  •  Multidimensional Arrays
  •  One Dimensional Slicing
  •  Reshaping
  •  Multidimensional Slicing
  •  Manipulating Array Shapes
  •  Appendix B - NumPy Crash Course - Matrix Multiplication
  •  Stacking
  •  Outro

Appendix B - NumPy Crash Course: Outro

  •  Softmax
  •  Cross Entropy

Trending Courses

Popular Courses

Popular Platforms

Learn more about the Courses

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

Careers360 App
150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books