Post Graduate Certification Program in Business Intelligence and Analytics

BY
EduBridge

Mode

Online

Fees

₹ 28500

Quick Facts

particular details
Medium of instructions English
Mode of learning Self study, Virtual Classroom
Mode of Delivery Video and Text Based
Frequency of Classes Weekdays
Learning efforts 12-15 Hours Per Week

Course and certificate fees

Fees information
₹ 28,500
certificate availability

Yes

certificate providing authority

EduBridge

The syllabus

Term-1: Foundation

Foundation course in BI & Analytics
  • Introduction to Business Analytics
  • R for Data Science
  • Introduction to R and R Studio
  • Dealing with Data Using R
  • Visualization Using R
  • R-Markdown
  • Missing Value Treatment
  • Exploratory Data Analysis Using R
Business Finance
  • Fundamentals of Finance
  • Finance as a Function
  • Financial Management Decisions
  • Financial Statement Analysis Using Financial Ratios
  • Working Capital Management
  • Understanding the Concepts of Working Capital
  • Operating and Cash Operating Cycle of a Firm
  • Investment and Financing of Working Capital
  • Capital Budgeting
  • Discounted Cash Flow
  • Time Value of Money
  • Net Present Value
  • Making Capital Investment Decision
  • Capital Structure
Marketing and CRM
  • Core Concepts of Marketing
  • Segmentation, Targeting & Positioning
  • Marketing Mix
  • Customer Life Time Value
  • Customer Relationship
  • Management Framework
  • Consumer Behaviour
  • Regency, Frequency & Monetary Analysis
  • Computation of CLTV
Statistics for decision making
  • Analysis of Variance
  • Regression Analysis
  • Simple Linear Regression
  • Ordinary Least Sum of Squares
  • Simple Linear Regression: Assumptions & Evaluation
  • Basics of ANOVA
  • One Way ANOVA
  • Applications of ANOVA
  • ANOVA with Interaction Effects
  • Two Way ANOVA
  • Dimension Reduction Techniques
  • Requirement for Dimension Reduction
  • Principal Component Analysis
  • Factor Analysis
  • Case Study: Hands-On Using Python/R

Term-2: Predictive Analytics

Introduction to predictive analytics
  • Case Study
    • - Data Pre-processing in R
  • Case Study 2
    • - K-means cluster analysis for Indian liver
  • Case Study 3
    • - Sales prediction
  • Case Study 4 - Parkinsons Data
    • -Random Forest Approach
  • Case Study 5 - Classification model for thoracic surgery data
Simple Linear Regression (SLR)
  • Case-let Overview
  • Introduction to Regression
  • Model Development
  • Model Validation
  • Demo using Excel & SPSS
Multiple Linear Regression (MLR)
  • Multiple Linear Regression
  • Estimation of Regression Parameters
  • Model Diagnostics
  • Dummy, Derived & Interaction Variables
  • Multi-collinearity
  • Model Deployment
  • Demo using SPSS
Logistic Regression
  • Discrete choice models
  • Logistic Regression
  • MLE Estimation of Parameters
  • Logistic Model Interpretation
  • Logistic Model Diagnostics
  • Logistic Model Deployment
  • Demo using SPSS
Decision Trees & Unstructured DA
  • Introduction to Decision Trees
  • Chi-Square Automatic Interaction
  • Detectors (CHAID)
  • Classification and Regression Tree (CART)
  • Analysis of Unstructured data
  • Naive Bayes algorithm
  • Demo using SPSS
Forecasting and Time series Analysis
  • Forecasting
  • Time Series Analysis
  • Additive & Multiplicative models
  • Exponential smoothing techniques
  • Forecasting Accuracy
  • Auto-regressive & Moving average models
  • Demo using SPSS
Machine Learning Overview
  • Types of Machine Learning Algorithms
  • Supervised Learning Algorithms
  • Unsupervised Learning Algorithms
  • Implement and demonstrate the
  • FIND-S algorithm
  • Candidate-Elimination algorithm
  • ID3 algorithm
  • Backpropagation algorithm
  • naïve Bayesian classifier
  • Bayesian Network
  • k means algorithm
  • k-Nearest Neighbour algorithm
  • Locally Weighted Regression algorithm

Term-3: Business Intelligence tools

Introduction to data visualization
  • Introduction to data visualization
  • Bar chart
  • Pie chart
  • Stacked area chart
  • Line chart
  • Histogram
  • Scatter Plot
  • Combo Plots-Part 1-Scatter and trendline (Regression Plot)
  • Combo Plots-Part 2-Bar and Line
Data warehouse-introduction
  • Business Intelligence
  • General concept of Data Warehouse
  • Dimensional modelling
  • ETL and Metadata
  • Online Analytical Processing (OLAP)
  • Data Mining
  • Data Modelling for Business Intelligence
  • Introduction to Data Modelling
  • Understanding Business Requirements
  • The Data Life cycle
  • Conceptual Model
  • Logical Model
Informatica
  • Working with Flat Files
  • Overview Flat File Properties
  • Mapplet
  • Workflow Schedule
  • Update Strategy Transformation
  • Sequence Generator Transformation
  • Additional Transformations
  • Reusable Transformations
  • SQL transformation
Datastage
  • Introduction to IBM IIS and Datastage
  • Introduction to IBM IIS
  • Datastage runtime Architecture and various stages
  • Platform Architecture
  • Standard data transformation Techniques
  • Transforming Data
  • Metadata in the Parallel Framework
  • Explain and Create schemes
Microsoft Power BI
  • Introduction to Power BI
  • Power BI Desktop & Data Transformation
  • Data Analysis Expressions (DAX)
  • Data Visualization
  • Power BI Service,Q&A, and Quick Insights
  • Connectivity Modes
  • Power BI Report Servers
  • Using R & Python in Power BI
  • Advanced Analytics In Power BI
Data visualization with R
  • Create basic bar charts, histograms,pie charts, scatter plots, line plots, box plots, and maps using R and related packages.
  • Customize charts and plots using themes and faceting.
  • Create maps using the Leaflet package for R.
  • Create interactive dashboards using the Shiny package for R.
Introduction to SAS
  • Module Introduction
  • SAS- Overview
  • SAS Studio
  • SAS- Program Structure
  • SAS: Data Sets
  • SAS: Variables
  • Lab Activity Time- SAS Variables
  • SAS: Arrays
  • Lab Activity - SAS Strings & Arrays
  • SAS: Numeric Formats
  • SAS: Operators
  • Lab Activity Time- SAS Operators
  • SAS: Loops
  • SAS: Decision Making
  • SAS: Input Methods
  • SAS Macros
  • Lab Activity Time- SAS Macros
  • SAS: Date & Time
  • SAS: Reading Raw Data
  • SAS Reading & Writing Data Sets
  • Concatenate Data sets
  • SAS: Merge Data sets
  • SAS: Subsetting Data sets
  • SAS: Sorting Data sets
  • SAS: Format Data sets
  • Lab Activity Time-SAS Merge, Concatenate, Sub-setting, Sorting,
  • Format Data Sets
  • SAS: SQL
  • SAS: Output Delivery System
  • SAS: Simulations
  • SAS: Data Visualization
  • Lab Activity Time-SAS Data Visualization
  • SAS: Enterprise Guide
  • Visual Analytics
  • JMP
Tableau
  • Introduction to Visualization and Tableau
  • Tableau essentials
  • Creating visualizations in Tableau
  • Filter groups and sets
  • Formulas in Tableau
  • Level of detailed expressions
  • Optimizing tableau performance
  • Advanced visualization in Tableau
  • Connecting to different data sources
  • Hands-on with Tableau

Term-4: Applications of Business Analytics

Introduction to Big Data
  • Introduction to Big Data
  • Characteristics of Big Data
  • Hadoop Architecture
  • Hadoop Components
Big Data Analytics
  • Introduction to MapReduce
  • MapReduce with Java
Marketing and retail analytics
  • Marketing and retail terminologies
  • Customer Analytics
  • KNIME
  • Retail Dashboard
  • Customer Churn
  • Association rules mining
Web and social media analytics
  • Web analytics understanding the matrix
  • Basic and advanced web matrix
  • Google analytics
  • Campaign Analytics
  • Text Mining
Supply Chain & Logistics Analytics
  • Introduction to supply chain
  • RNN and its mechanism
  • Designing optimal strategies
  • Inventory control and management
  • Inventory classification
  • Inventory modeling

Trending Courses

Popular Courses

Popular Platforms

Learn more about the Courses

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

Careers360 App
150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books