Careers360 Logo
Interested in this College?
Get updates on Eligibility, Admission, Placements Fees Structure
Compare

Quick Facts

Medium Of InstructionsMode Of LearningMode Of Delivery
EnglishSelf StudyVideo and Text Based

Courses and Certificate Fees

Certificate Availability
no

The Syllabus

Part-A:Essentials Of Vector Calculus
  • Introduction
  • The Magnitude!
  • The Direction (Unit Vector)
    • Dot Product Of Unit Vectors
    • Defining A Plane Using Direction Components
  • Dot Product
  • The Cross Product
Part B: Coordinate System
  • Introduction To Coordinate System
  • Cartesian Coordinate System
    • Defining Point ‘P’ In Cartesian Coordinate System
  • Constant Planes
  • Differential Volume In Space
  • Vectors In Cartesian
  • Cylindrical Coordinate System
    • Finding Point 'P' In Cylinder
  • Constant Plane
  • Introduction To Coordinate System
  • Spherical Coordinate System
  • Constant Planes
  • Locating Point 'P' In Spherical Coordinate System
  • Differential Volume In Spherical System
  • Relation Between Various Coordinate Systems
    • Conversion Of Rectangular Coordinates To Spherical Coordinates
    • Conversion Of Spherical Coordinate To Cartesian Coordinate System
Part–C: The Integrals And Del Operator
  • Line, Surface And Volume Integrals
  • Volume Integrals
  • Integral Calculus
  • Triple Integral For Volume
  • All About The Del Operator
  • Gradient Of A Scalar
  • Divergence Of Vector Field
  • Curl
  • Fundamental Theorems
    • Strokes Theorem
    • Divergence Theorem
Part-A:Essentials Of Vector Calculus
  • Introduction
  • The Magnitude!
  • The Direction (Unit Vector)
    • Dot Product Of Unit Vectors
    • Defining A Plane Using Direction Components
  • Dot Product
  • The Cross Product
Part B: Coordinate System
  • Introduction To Coordinate System
  • Cartesian Coordinate System
    • Defining Point ‘P’ In Cartesian Coordinate System
  • Constant Planes
  • Differential Volume In Space
  • Vectors In Cartesian
  • Cylindrical Coordinate System
    • Finding Point 'P' In Cylinder
  • Constant Plane
  • Introduction To Coordinate System
  • Spherical Coordinate System
  • Constant Planes
  • Locating Point 'P' In Spherical Coordinate System
  • Differential Volume In Spherical System
  • Relation Between Various Coordinate Systems
    • Conversion Of Rectangular Coordinates To Spherical Coordinates
    • Conversion Of Spherical Coordinate To Cartesian Coordinate System
Part B: Coordinate System
  • Line, Surface And Volume Integrals
  • Volume Integrals
  • Integral Calculus
  • Triple Integral For Volume
  • All About The Del Operator
  • Gradient Of A Scalar
  • Divergence Of Vector Field
  • Curl
  • Fundamental Theorems
    • Strokes Theorem
    • Divergence Theorem

  • Introduction
    • What Is Electrostatics?
  • Coulomb’s Law
    • More About Constant Of Proportionality
    • Coulomb’s Law In Vector Format
  • Electric Field Intensity ‘E’
    • Various Charge Distribution
  • 'E' Due To Various Charge Distributions
    • 'E' Due To A Point Charge
    • 'E'  Due To Line Charge Distribution
    • 'E' Due To Finite Length Line
    • 'E'  Due To Infinite Line Charge
    • 'E' Due To Circular Ring
    • 'E' Due To Surface Charge Distribution
  • Gauss’s Law And Its Applications
    • Electric Flux
    • Various Relations Reated To Gauss Law
  • Gauss Law
    • What Is Gaussian Surface!
  • Applications Of Gauss’s Law
    • Proof Of Gauss’s Law From Coulomb's Law (In Case Of Point Charge)
    • Elctric Flux Density Due To Infinite Long Conductor
    • Elctric Flux Density Due To A Sheet Of Charge
  • Divergence Of Electric Flux Density
  • Introduction
    • What Is Electrostatics?
  • Coulomb’s Law
    • More About Constant Of Proportionality
    • Coulomb’s Law In Vector Format
  • Electric Field Intensity ‘E’
    • Various Charge Distribution
  • 'E' Due To Various Charge Distributions
    • 'E' Due To A Point Charge
    • 'E'  Due To Line Charge Distribution
    • 'E' Due To Finite Length Line
    • 'E'  Due To Infinite Line Charge
    • 'E' Due To Circular Ring
    • 'E' Due To Surface Charge Distribution
  • Gauss’s Law And Its Applications
    • Electric Flux
    • Various Relations Reated To Gauss Law
  • Gauss Law
    • What Is Gaussian Surface!
  • Applications Of Gauss’s Law
    • Proof Of Gauss’s Law From Coulomb's Law (In Case Of Point Charge)
    • Elctric Flux Density Due To Infinite Long Conductor
    • Elctric Flux Density Due To A Sheet Of Charge
  • Divergence Of Electric Flux Density

  • Introduction
  • Current
    • Current In Conductors
    • Conductivity Of Material
    • Various Relations Of Conductivity
    • Continuity Equation
    • Relaxation Time
  • Dielectric Materials
    • Electric Dipole
    • Dipole In Uniform Field
    • Properties Of Dielectric Materials
    • Dielectric Constant
    • Isotropic, Homogeneous & Linear Dielectrics
  • Potential
    • Definition Of Electric Potential
    • Potential Difference And Absolute Potential
    • Absolute Potential
    • Relation Between 'E' & 'V'
    • Conservative Field For Maxwell’s Equation
    • Unit Of ‘E’ & More Detail About E & V
    • Voltage Due To Various Charges Distribution
  • Capacitor
    • Parallel Platecapacitor
    • Sphericalcapacitor-Capacitance Of Two Concentric Conducting Spheres
    • Capacitance For Coaxial Cable
  • Energy Density
  • Poison’s & Laplace’s Equation
  • Maxwells Two Equations
  • Introduction
  • Current
    • Current In Conductors
    • Conductivity Of Material
    • Various Relations Of Conductivity
    • Continuity Equation
    • Relaxation Time
  • Dielectric Materials
    • Electric Dipole
    • Dipole In Uniform Field
    • Properties Of Dielectric Materials
    • Dielectric Constant
    • Isotropic, Homogeneous & Linear Dielectrics
  • Potential
    • Definition Of Electric Potential
    • Potential Difference And Absolute Potential
    • Absolute Potential
    • Relation Between 'E' & 'V'
    • Conservative Field For Maxwell’s Equation
    • Unit Of ‘E’ & More Detail About E & V
    • Voltage Due To Various Charges Distribution
  • Capacitor
    • Parallel Platecapacitor
    • Sphericalcapacitor-Capacitance Of Two Concentric Conducting Spheres
    • Capacitance For Coaxial Cable
  • Energy Density
  • Poison’s & Laplace’s Equation
  • Maxwells Two Equations

  • Introduction
    • Magnetic Flux
    • Magnetic Field Intensity (H)
    • Magnetic Flux Density
  • Biot-Savart’s Law
    • Case 1: Magnetic Field Intensity Due To Infinite Long Straight Filament On Point 'P'
    • Case 2: Magnetic Field Intensity  Due To Finite Length Current Element
    • Case 3: Magnetic Field Intensity At The Centre Of Square Current Loop
    • Case 4:  'H' Due To Circular Conducting Filament On Pointp:
    • Case 5: Relation Between Magnetic Field Intensity (H), Volume Current Density (J) And Surfacecurrent Density (K)
  • Ampere's Circuitallaw {Or} Amperes Works Law
  • Applications Of Ampere's Circuital Law
    • Case 1: Magneticfield Intensity Due To Long Filamentary Conductor
    • Case 2: Magnetic Field Intensity Due To A Coaxial Transmission Line
    • Case 3: Curl Of Magnetic Field Intensity And Difference Between Curl Anddivergence
    • Case 4: Strokes Theorem For Magnetic Field Intensity
  • Introduction
    • Magnetic Flux
    • Magnetic Field Intensity (H)
    • Magnetic Flux Density
  • Biot-Savart’s Law
    • Case 1: Magnetic Field Intensity Due To Infinite Long Straight Filament On Point 'P'
    • Case 2: Magnetic Field Intensity  Due To Finite Length Current Element
    • Case 3: Magnetic Field Intensity At The Centre Of Square Current Loop
    • Case 4:  'H' Due To Circular Conducting Filament On Pointp:
    • Case 5: Relation Between Magnetic Field Intensity (H), Volume Current Density (J) And Surfacecurrent Density (K)
  • Ampere's Circuitallaw {Or} Amperes Works Law
  • Applications Of Ampere's Circuital Law
    • Case 1: Magneticfield Intensity Due To Long Filamentary Conductor
    • Case 2: Magnetic Field Intensity Due To A Coaxial Transmission Line
    • Case 3: Curl Of Magnetic Field Intensity And Difference Between Curl Anddivergence
    • Case 4: Strokes Theorem For Magnetic Field Intensity

  • The Magnet
  • Force On A Movingcharge And Differential Current Element
    • Lorentz Force Equation
  • Force On Differential Current Element
  • Example: Force Between Line Currents
  • Force And Torque On A Current Loop Or Force And Torque On A Closed Circuit
    • Magnetic Moment
  • Magnetization
  • Magnetic Materials
    • Electromagnets And Its Important Uses
    • Classification Of Magnetic Materials According To Their Alignment Of Magnetic Moment
  • Magnetic Boundary Conditions:The Borders!
  • The Magnet
  • Force On A Movingcharge And Differential Current Element
    • Lorentz Force Equation
  • Force On Differential Current Element
  • Example: Force Between Line Currents
  • Force And Torque On A Current Loop Or Force And Torque On A Closed Circuit
    • Magnetic Moment
  • Magnetization
  • Magnetic Materials
    • Electromagnets And Its Important Uses
    • Classification Of Magnetic Materials According To Their Alignment Of Magnetic Moment
  • Magnetic Boundary Conditions:The Borders!

  • Introduction
    • What Is Transverse Wave?
    • Longitudinal Wave
    • The Problem
  • Whatis Propagation?
    • Lighting The Wave!….And Light Was There.
  • What Is Light Andwhat Is Frequency? (Waaaave!)
    • Frequency And Wave!
  • Concept Of Polarization
  • Types Of Waves
  • Wave Equations
    • Wave Equations For Good Conductors
    • Wave Equations For Free Space
  • Relationbetween ‘E’ And ‘H’ ,The Characteristic Or Intrinsic Impedance Of The Free Space Or Transverse Nature Of Wave
  • Bouncing A Wave!
    • Normal Incidenceat A Plane Boundary Of Good Conducting Materials (Standing Wave)
    • Normal Incidenceat A Plane Boundary Of Two Perfect Dielectric Materials
    • Reflection At The Surface Of A Conducting Medium – Normal Incidence
  •  Poynting Vector And Power Flow Inelectromagnetic Fields
  • Electromagnetics & Transmission Lines: Overview Of T And Π Networks.
    • Two Wire Transmission Lines,
    • Primary And Secondary Constants.
    • Transmission Line Equations. Infinite Line And Characteristic Impedance- Open And Short Circuit      Lines And Their Significance
  • Introduction To Electromagnetics & Antennas.
  • Introduction To Electromagnetics & Wireless Communications.
  • Introduction
    • What Is Transverse Wave?
    • Longitudinal Wave
    • The Problem
  • Whatis Propagation?
    • Lighting The Wave!….And Light Was There.
  • What Is Light Andwhat Is Frequency? (Waaaave!)
    • Frequency And Wave!
  • Concept Of Polarization
  • Types Of Waves
  • Wave Equations
    • Wave Equations For Good Conductors
    • Wave Equations For Free Space
  • Relationbetween ‘E’ And ‘H’ ,The Characteristic Or Intrinsic Impedance Of The Free Space Or Transverse Nature Of Wave
  • Bouncing A Wave!
    • Normal Incidenceat A Plane Boundary Of Good Conducting Materials (Standing Wave)
    • Normal Incidenceat A Plane Boundary Of Two Perfect Dielectric Materials
    • Reflection At The Surface Of A Conducting Medium – Normal Incidence
  •  Poynting Vector And Power Flow Inelectromagnetic Fields
  • Electromagnetics & Transmission Lines: Overview Of T And Π Networks.
    • Two Wire Transmission Lines,
    • Primary And Secondary Constants.
    • Transmission Line Equations. Infinite Line And Characteristic Impedance- Open And Short Circuit      Lines And Their Significance
  • Introduction To Electromagnetics & Antennas.
  • Introduction To Electromagnetics & Wireless Communications.

Instructors

Articles

Back to top