Calculus 2 with the Math Sorcerer

BY
Udemy

Master the fundamentals as well as advanced principles involved with calculus 2 from the ground up.

Mode

Online

Fees

₹ 3299

Quick Facts

particular details
Medium of instructions English
Mode of learning Self study
Mode of Delivery Video and Text Based

Course overview

Calculus 2 is an educational field that includes integral calculus with functions including applications, polar coordinates, specialized integration methods, parametric equations, quantitative, power series convergence, and separable differential equations. The Math Sorcerer - Certified Mathematician created Calculus 2 with the Math Sorcerer certification course, which is delivered on Udemy.

Calculus 2 with the Math Sorcerer online course is a self-paced course that helps individuals master the core principles of mathematics including algebra, calculus, geometry, and trigonometry. With Calculus 2 with the Math Sorcerer online training, individuals will be provided with more than 36.5 hours of digital video-based lessons accompanied by 8 downloadable materials and 8 articles revolving around topics like the parametric equation, convergence, divergence, trigonometric substitution, partial fraction decomposition, integration, series, and much more.

The highlights

  • Certificate of completion
  • Self-paced course
  • 36.5 hours of pre-recorded video content
  • 8 articles
  • 8 downloadable resources

Program offerings

  • Online course
  • Learning resources. 30-day money-back guarantee
  • Unlimited access
  • Accessible on mobile devices and tv

Course and certificate fees

Fees information
₹ 3,299
certificate availability

Yes

certificate providing authority

Udemy

Who it is for

What you will learn

Mathematical skill

After completing Calculus 2 with the Math Sorcerer online certification, individuals will become familiar with the basic concepts of calculus 2 of mathematics as well as will gain an overview of the fundamentals of algebra, calculus, trigonometry, integration, and geometry.  Individuals will learn power series, Taylor series, and Maclaurin series, as well as many theories related to calculus 2, such as Hooke's law and the convergence theorem. Individuals will learn about various concepts and strategies involved with integrals, convergence, polynomials, divergence, limits, parametric equations, hyperbolic functions, parts formula, and partial fraction decomposition.. Individuals will also gain an understanding of the ideas underlying series tests, ratio tests, root tests, alternating series tests, and comparison tests.

The syllabus

Derivatives of the Inverse Trigonometric Functions

  • Introduction to Inverse Trigonometric Derivatives
  • Inverse Trigonometric Derivative Example 1
  • Inverse Trigonometric Derivative Example 2
  • Inverse Trigonometric Derivative Example 3
  • Inverse Trigonometric Derivative Example 4
  • Inverse Trigonometric Derivative Example 5
  • Inverse Trigonometric Derivative Example 6
  • Inverse Trigonometric Derivative Example 7
  • Inverse Trigonometric Derivative Example 8
  • Inverse Trigonometric Derivative Example 9
  • Inverse Trigonometric Derivative Example 10
  • Inverse Trigonometric Derivative Example 11
  • Inverse Trigonometric Derivative Example 12
  • Inverse Trigonometric Derivative Example 13
  • Algebraic Form Example 1
  • Algebraic Form Example 2
  • Algebraic Form Example 3
  • Algebraic Form Example 4
  • Tangent Line Problem

Integrals Involving Inverse Trigonometric Functions

  • Integration Formulas Leading to the Inverse Trig Functions
  • Integral Example 1
  • Integral Example 2
  • Integral Example 3
  • Integral Example 4
  • Integral Example 5
  • Integral Example 6
  • Integral Example 7
  • Integral Example 8
  • Integral Example 9
  • Integral Example 10
  • Integral Example 11
  • Integral Example 12
  • Integral Example 13
  • Integral Example 14
  • Integral Example 15
  • Integral Example 16
  • Integral Example 17
  • Integral Example 18
  • Integral Example 19
  • Integral Example 20
  • Integral Example 21
  • Integral Example 22
  • Integral Example 23
  • Integral Example 24
  • Integral Example 25
  • Differential Equation Example
  • Integration Formulas Leading to the Inverse Trig Functions
  • Integral Example 1
  • Integral Example 2
  • Integral Example 3
  • Integral Example 4
  • Integral Example 5
  • Integral Example 6
  • Integral Example 7
  • Integral Example 8
  • Integral Example 9
  • Integral Example 10
  • Integral Example 11
  • Integral Example 12
  • Integral Example 13
  • Integral Example 14
  • Integral Example 15
  • Integral Example 16
  • Integral Example 17
  • Integral Example 18
  • Integral Example 19
  • Integral Example 20
  • Integral Example 21
  • Integral Example 22
  • Integral Example 23
  • Integral Example 24
  • Integral Example 25
  • Differential Equation Example

More Problems with Inverse Trigonometric Functions

  • Derivative of Arcsine Full Derivation
  • Derivative of Arctangent Full Derivation
  • Equation of the Tangent Line with Implicit Differentiation Example 1
  • Equation of the Tangent Line with Implicit Differentiation Example 2
  • Equation of the Tangent Line with Implicit Differentiation Example 3
  • Finding Extrema using the First Derivative Test

Introduction to Hyperbolic Functions

  • The Definitions of the Hyperbolic Functions
  • Evaluating Hyperbolic Functions
  • Hyperbolic Identity Proof 1
  • Hyperbolic Identity Proof 2
  • Hyperbolic Identity Proof 3
  • Hyperbolic Identity Proof 4

Hyperbolic Functions and Differentiation

  • The Derivatives and Integrals of the Hyperbolic Functions
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11
  • Example 12
  • Example 13
  • Example 14
  • Tangent Line Example

Hyperbolic Functions and Integration

  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Definite Integral Example 1
  • Definite Integral Example 2

More Problems with Hyperbolic Functions

  • Limit Example with a Hyperbolic Function
  • Equation of the Tangent Line Example 1
  • Equation of the Tangent Line Example 2
  • Equation of the Tangent Line Example 3
  • Derivative Proof with a Hyperbolic Function
  • Graphing the Hyperbolic Cosine
  • Relative Extrema Example with Hyperbolic Functions
  • Derivation of an Inverse Hyperbolic Function

The Area Between Two Curves

  • Introduction to the Area Between two Curves(Theory/Derivation Only)
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7

The Disk(Washer) Method

  • Intro to the Disk/Washer Method (Theory/Derivation)
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10

The Shell Method

  • Introduction to the Shell Method(Theory)
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11
  • Example 12
  • Example 13

Arc Length

  • Introduction to Arc Length and Derivation
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7

Surfaces of Revolution

  • Introduction to Surfaces of Revolution

Work and Hooke's Law

  • Introduction to Work using Calculus (Full Derivation)
  • Example 1
  • Example 2
  • Example 3

Center of Mass and Center of Gravity

  • Example 1
  • Example 2
  • Example 3

Review of Basic Integration

  • Basic Integration Formulas
  • Integration Formulas Involving the Natural Logarithm
  • Integration Formulas for Bases other than e
  • Integration Formulas that Lead to Arctangent and Arcsine
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11
  • Example 12
  • Example 13

Integration by Parts

  • Introduction to Integration by Parts
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11
  • Example 12
  • Example 13
  • Example 14
  • Example 15

Tabular Integration

  • Introduction to Tabular Integration
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9

More Integration Practice Problems

  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11
  • Example 12

Trigonometric Integrals Powers of Sine and Cosine

  • Integrals with Powers of Sine and Cosine (Introduction)
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11
  • Example 12

Trigonometric Integrals Powers of Secant and Tangent

  • Integrals with Powers of Secant and Tangent (Introduction)
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11
  • Example 12
  • Example 13
  • Example 14
  • Example 15
  • Example 16
  • Example 17
  • Example 18
  • Example 19
  • Example 20

Trigonometric Integrals More Examples

  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11

Trigonometric Substitution

  • Introduction to Trigonometric Substitution
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11

Integration with Partial Fractions

  • How to Setup The Partial Fraction Decomposition
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11

Limits at Infinity

  • Example 1
  • Example 2
  • Example 3
  • Example 4

L'Hopital's Rule

  • Introduction to L'Hopital's Rule
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11
  • Example 12
  • Example 13
  • Example 14
  • Example 15
  • Example 16
  • Example 17
  • Example 18
  • Example 19
  • Example 20
  • Example 21
  • Example 22
  • Example 23
  • Example 24
  • Example 25
  • Example 26
  • Example 27
  • Example 28
  • Example 29
  • Example 30
  • Example 31

Improper Integrals

  • What is an Improper Integral?
  • Improper Integrals with Infinite Limits
  • Improper Integrals with Infinite Discontinuities
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11
  • Example 12
  • Example 13

The P-Test and Comparison Test for Integrals

  • How to the P-Test and Comparison Test for Integrals

Parametric Equations

  • Introduction to Parametric Equations
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Points at which a Curve is Not Smooth

Parametric Equations and Calculus

  • Introduction to Calculus with Parametric Equations
  • Finding the Derivative Given Parametric Equations Example 1
  • Finding the Derivative Given Parametric Equations Example 2
  • Finding the Derivative Given Parametric Equations Example 3
  • Finding the First and Second Derivative Given Parametric Equations
  • First Derivative, Second Derivative, Slope, and Concavity Example 1
  • First Derivative, Second Derivative, Slope, and Concavity Example 2
  • Concavity Example 1
  • Concavity Example 2
  • Concavity Example 3
  • Concavity Example 4
  • Concavity Example 5
  • Tangent Line Example 1
  • Tangent Line Example 2
  • Tangent Line Example 3
  • Horizontal and Vertical Tangent Lines Example 1
  • Horizontal and Vertical Tangent Lines Example 2
  • Introduction to Arc Length with Parametric Equations
  • Arc Length Example 1
  • Arc Length Example 2

Polar Coordinates and Calculus

  • Introduction to Polar Coordinates
  • How to Convert Between Polar and Rectangular Coordinates
  • Plot the Polar Coordinates and Convert to Rectangular Example 1
  • Plot the Polar Coordinates and Convert to Rectangular Example 2
  • Convert the Polar Equation Example 1
  • Convert the Polar Equation Example 2
  • Convert the Polar Equation Example 3
  • Convert the Polar Equation Example 4
  • Convert the Polar Equation Example 5
  • Convert the Rectangular Equation Example 1
  • Convert the Rectangular Equation to Polar and Graph
  • Convert the Polar Equation to Rectangular and Graph
  • Area in Polar Coordinates

Sequences

  • Introduction to Sequences
  • How to Find the Limit of a Sequence
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11
  • Example 12
  • Example 13

Series

  • Introduction to Infinite Series
  • The Convergence of a Series
  • Telescoping Series Example 1
  • Telescoping Series Example 2

Geometric Series

  • Introduction to Infinite Geometric Series
  • Super Formula for Infinite Geometric Series
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11
  • Example 12

The nth Term Test

  • Introduction to the nth Term Test
  • Proof of the nth Term Test
  • Example
  • The nth Term Test Harder Example

The Integral Test and the P-Test

  • Introduction to The Integral Test
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • How to use the p-test
  • Riemann Zeta Function Example

Comparison of Series

  • Introduction to the Direct Comparison Test
  • Introduction to the Limit Comparison Test
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10

Alternating Series

  • Introduction to the Alternating Series Test
  • Introduction to Absolute and Conditional Convergence
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Absolute Convergence, Conditional Convergence, or Divergence Example 1
  • Absolute Convergence, Conditional Convergence, or Divergence Example 2

The Ratio Test and The Root Test

  • Introduction to the Ratio and Root Test
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11
  • Example 12
  • Example 13
  • Example 14

More Infinite Series Examples

  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Example 11

Taylor Polynomials

  • Introduction to Taylor and Maclaurin Polynomials
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Taylor Polynomial Example

Power Series

  • Introduction to Power Series and the Convergence Theorem
  • Radius of Convergence Example
  • Center Example 1
  • Center Example 2
  • Interval of Convergence Example 1
  • Interval of Convergence Example 2
  • Interval of Convergence Example 3
  • Interval of Convergence Example 4
  • Interval of Convergence Example 5
  • Interval of Convergence Example 6
  • Interval of Convergence Example 7
  • Interval of Convergence Example 8
  • Interval and Radius of Convergence Example 1

Representation of Functions by Power Series

  • Introduction to Geometric Power Series
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Finding a Power Series by Differentiating

Maclaurin Series

  • Introduction to Taylor and Maclaurin Series
  • Three Important Formulas
  • Maclaurin Series Example 1
  • Maclaurin Series Example 2
  • Maclaurin Series Example 3
  • Maclaurin Series Example 4
  • Maclaurin Series Example 5
  • Maclaurin Series Example 6
  • Maclaurin Series Example 7
  • Maclaurin Series Example 8
  • Maclaurin Series Example 9
  • Maclaurin Series Example 10
  • Maclaurin Series Example 11
  • Maclaurin Series Example 12
  • Taylor Series Example
  • Maclaurin Series using the Binomial Series
  • Maclaurin Series Harder Example 1
  • Maclaurin Series Harder Example 2
  • Maclaurin Series Harder Example 3
  • Using Maclaurin Series to Find Sums

Trending Courses

Popular Courses

Popular Platforms

Learn more about the Courses

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

Careers360 App
150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books