Deep Learning with PyTorch for Medical Image Analysis

BY
Udemy

Mode

Online

Fees

₹ 599 4099

Quick Facts

particular details
Medium of instructions English
Mode of learning Self study
Mode of Delivery Video and Text Based

Course and certificate fees

Fees information
₹ 599  ₹4,099
certificate availability

Yes

certificate providing authority

Udemy

The syllabus

Introduction

  • COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!
  • Link to Download the Course Files
  • Installation and Environment Setup
  • Installation without yml file
  • Course Curriculum

Crash Course: Numpy

  • Introduction to Numpy
  • NumPy Arrays
  • NumPy Arrays Part Two
  • NumPy Index Selection
  • NumPy Operations
  • NumPy Exercises
  • NumPy Exercise - Solutions

Machine Learning Concepts Overview

  • What is Machine Learning
  • Supervised Learning
  • Overfitting
  • Evaluating Performance - Classification Error Metrics
  • Evaluating Performance - Regression Error Metric

PyTorch Basics

  • PyTorch Basics Introduction
  • Tensor Basics
  • Tensor Basics-Part Two
  • Tensor Operations
  • Tensor Operations-Part Two
  • PyTorch Basics - Exercise
  • PyTorch Basics - Exercise Solutions

CNN - Convolutional Neural Networks

  • Introduction to CNNs
  • Understanding the MNIST data set
  • ANN with MNIST - Part One - Data
  • ANN with MNIST - Part Two - Creating the Network
  • IMPORTANT: Library Difference between video and notebook
  • ANN with MNIST - Part Three - Training
  • ANN with MNIST - Part Four - Evaluation
  • Image Filters and Kernels
  • Convolutional Layers
  • Pooling Layers
  • MNIST Data Revisited
  • MNIST with CNN - Code Along - Part One
  • MNIST with CNN - Code Along - Part Two
  • MNIST with CNN - Code Along - Part Three
  • Why do we need GPUs?
  • Using GPUs for PyTorch

Medical Imaging - A Short Introduction

  • Introduction
  • Overview: X-RAY
  • Overview: CT
  • Overview: MRI
  • Overview: PET
  • Recap: Medical Imaging

Data Formats in Medical Imaging

  • Introduction
  • DICOM
  • DICOM-in-Python
  • Recap: DICOM
  • NIfTI
  • NIfTI-in-Python
  • Recap:NIfTI
  • Preprocessing
  • Preprocessing-in-Python-Part-1
  • Preprocessing-in-Python-Part-2
  • Recap:Preprocessing

Pneumonia - Classification

  • Introduction
  • Preprocessing
  • Train-01-Data-Loading
  • Train-02-Model-Creation
  • Train-03-Trainer
  • Train-04-Evaluation
  • Interpretability

Cardiac-Detection

  • Introduction
  • Preprocessing
  • Dataset-Part-1
  • Dataset-Part-2
  • Train-01-Data-Loading
  • Train-02-Model-Creation
  • Train-03-Evaluation

Atrium-Segmentation

  • Introduction
  • Preprocessing-01-Visualization
  • Preprocessing-02-Processing
  • Dataset-01-Dataset-Creation
  • Dataset-02-Dataset-Validation
  • UNet
  • Train-01-Data-Loading-and-Loss
  • Train-02-Model-Creation
  • Train-03-Evaluation

Capstone-Project: Lung Tumor Segmentation

  • Introduction
  • Overview
  • Oversampling
  • Hint - RuntimeError: expected scalar type Double but found Float
  • Discussion

3D Liver and Liver Tumor Segmentation

  • Introduction
  • Data-Visualization
  • Model
  • Train-01-TorchIO-Dataset
  • Train-02-Model-Creation
  • Train-03-Evaluation

BONUS SECTION: THANK YOU!

  • BONUS LECTURE

Instructors

Mr Jose Portilla
Head of Data Science
Udemy

Other Bachelors, M.S

Trending Courses

Popular Courses

Popular Platforms

Learn more about the Courses

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

Careers360 App
150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books