THE DIVERGENCE OF THE VECTOR IS SCALAR, THEN THE CURL OF THE VECTOR IS
Hello aspirant,
The divergence of the vector field is scalar. Divergence measures the discharging rate of a vector field. If v is the velocity field of a fluid, then the divergence of v at a point is the discharge of the fluid less the arrival at the point.
The curl of a vector field is a vector field. The curl of a vector field at a point measures the tendency of particles at that point to rotate about the axis that points in the direction of the curl at the point.
Hope this helps,
All the Best!!
In the center of electric dipole (a) electric field is zero (b) electric potential is zero (c) both (a) and (b) (d) none of them
We know that at the midpoint of the charges of the electric dipole, the electric field due to the charges is non zero, but the electric potential is zero.
Hence the correct option will be (b) electric potential is zero.