Differentiation Rules: Definition, Formula, Examples

Differentiation Rules: Definition, Formula, Examples

Edited By Komal Miglani | Updated on Oct 15, 2024 10:57 AM IST

Differentiation is one of the important parts of Calculus, which applies to measuring the change in the function at a certain point. Mathematically, it forms a powerful tool by which slopes of functions are determined, the maximum and minimum of functions found, and problems on motion, growth, and decay, to name a few. These concepts of differentiation have been broadly applied in branches of mathematics, physics, engineering, economics, and biology.

This Story also Contains
  1. Differentiation
  2. Differentiation of some basic functions
  3. Rules of Differentiation
  4. Solved Examples Based On Rules of Differentiation
  5. Summary
Differentiation Rules: Definition, Formula, Examples
Differentiation Rules: Definition, Formula, Examples

In this article, we will cover the concept of the Rule of Differentiation. This concept falls under the broader category of Calculus, which is a crucial Chapter in class 12 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination (JEE Main), and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Over the last five years of the JEE Main exam (from 2013 to 2023), a total of nine questions have been asked on this concept, including one in 2013, one in 2018, two in 2019, three in 2020, one in 2021, and one in 2022.

Differentiation

The process of finding the derivative is called differentiation. Let $f$ be defined on an open interval $I \subseteq$ containing the point $x_0$, and suppose that $\lim _{\Delta x \rightarrow 0} \frac{f\left(x_0+\Delta x\right)-f\left(x_0\right)}{\Delta x}$ exists. Then $f$ is said to be differentiable at $x_0$ and the derivative of $f$ at $x_0$, denoted by $f^{\prime}\left(x_0\right)$, is given by

$
f^{\prime}\left(x_0\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_0+\Delta x\right)-f\left(x_0\right)}{\Delta x}
$

For all $x$ for which this limit exists,
$f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ is a function of $x$.

In addition to $f^{\prime}(x)$, other notations are used to denote the derivative of $y=f(x)$. The most common notations are $f^{\prime}(x), \frac{d y}{d x}, y^{\prime}, \frac{d}{d x}[f(x)], D_x[y]$ or $D y$ or $y_1$. Here $\frac{d}{d x}$ or $D$ is the differential operator.

Differentiation of some basic functions

1. $\frac{d}{d x}($ constant $)=0$

2. $\frac{d}{d x}\left(\mathbf{x}^{\mathbf{n}}\right)=\mathbf{n} \mathbf{x}^{\mathbf{n}-1}$

3. $\frac{d}{d x}\left(\mathbf{a}^{\mathrm{x}}\right)=\mathbf{a}^{\mathrm{x}} \log _{\mathrm{e}} \mathbf{a}$

4. $\quad \frac{d}{d x}\left(\mathrm{e}^{\mathrm{x}}\right)=\mathrm{e}^{\mathrm{x}} \log _{\mathrm{e}} \mathrm{e}=\mathrm{e}^{\mathrm{x}}$

5. $\frac{d}{d x}\left(\log _{\mathrm{e}}|\mathbf{x}|\right)=\frac{\mathbf{1}}{\mathbf{x}}, \quad \mathbf{x} \neq 0$

6. $\quad \frac{d}{d x}\left(\log _{\mathbf{a}}|\mathbf{x}|\right)=\frac{1}{\mathbf{x} \log _{\mathrm{e}} \mathbf{a}}, \quad \mathbf{x} \neq 0$

7. $\frac{d}{d x}(\sin (\mathbf{x}))=\cos (\mathbf{x})$

8. $\frac{d}{d x}(\cos (\mathbf{x}))=-\sin (\mathbf{x})$

9. $\frac{d}{d x}(\tan (\mathbf{x}))=\sec ^2(\mathbf{x})$

10. $\frac{d}{d x}(\cot (\mathbf{x}))=-\csc ^2(\mathbf{x})$

11. $\frac{d}{d x}(\sec (\mathbf{x}))=\sec (\mathbf{x}) \tan (\mathbf{x})$

12. $\frac{d}{d x}(\csc (\mathbf{x}))=-\csc (\mathbf{x}) \cot (\mathbf{x})$

Rules of Differentiation

The important rules of differentiation are

  • Power Rule
  • Sum and Difference Rule
  • Product Rule
  • Quotient Rule
  • Chain Rule
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Let $f(x)$ and $g(x)$ be differentiable functions and $k$ be a constant. Then each of the following rules holds

Sum Rule

The derivative of the sum of a function $f$ and a function $g$ is the same as the sum of the derivative of $f$ and the derivative of $g$.

$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))
$
In general,

$
\frac{d}{d x}(f(x)+g(x)+h(x)+\ldots \ldots)=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))+\frac{d}{d x}(h(x))+\ldots \ldots
$

Difference Rule

The derivative of the difference of a function $f$ and $a$ function $g$ is the same as the difference of the derivative of $f$ and the derivative of $g$.

$
\begin{aligned}
& \frac{d}{d x}(f(x)-g(x))=\frac{d}{d x}(f(x))-\frac{d}{d x}(g(x)) \\
& \frac{d}{d x}(f(x)-g(x)-h(x)-\ldots \ldots)=\frac{d}{d x}(f(x))-\frac{d}{d x}(g(x))-\frac{d}{d x}(h(x))-\ldots \ldots
\end{aligned}
$

Constant Multiple Rule

The derivative of a constant $k$ multiplied by a function $f$ is the same as the constant multiplied by the derivative of $f$

$
\frac{d}{d x}(k f(x))=k \frac{d}{d x}(f(x))
$

Product rule

Let $f(x)$ and $g(x)$ be differentiable functions. Then,

$
\frac{d}{d x}(f(x) g(x))=g(x) \cdot \frac{d}{d x}(f(x))+f(x) \cdot \frac{d}{d x}(g(x))
$

This means that the derivative of a product of two functions is the derivative of the first function times the second function plus the derivative of the second function times the first function.

Extending the Product Rule

If three functions are involved, i.e let $k(x)=f(x) \cdot g(x) \cdot h(x)$
Let us have a function $\mathrm{k}(\mathrm{x})$ as the product of the function $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$. That is, $k(x)=(f(x) \cdot g(x)) \cdot h(x)$. Thus,

$
k^{\prime}(x)=\frac{d}{d x}(f(x) g(x)) \cdot h(x)+\frac{d}{d x}(h(x)) \cdot(f(x) g(x))
$

[By applying the product rule to the product of $f(x) g(x)$ and $h(x)$.]

$
\begin{aligned}
& =\left(f^{\prime}(x) g(x)+g^{\prime}(x) f(x)\right) h(x)+h^{\prime}(x) f(x) g(x) \\
& =f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+f(x) g(x) h^{\prime}(x)
\end{aligned}
$

Quotient Rule

Let $f(x)$ and $g(x)$ be differentiable functions. Then

$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \cdot \frac{d}{d x}(f(x))-f(x) \cdot \frac{d}{d x}(g(x))}{(g(x))^2}
$
OR
if $h(x)=\frac{f(x)}{g(x)}$, then $h^{\prime}(x)=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{(g(x))^2}$
As we see in the following theorem, the derivative of the quotient is not the quotient of the derivatives.

Chain Rule

If $u(x)$ and $v(x)$ are differentiable funcitons, then $u o v(x)$ or $u[v(x)]_{\text {is also differentiable. }}$
If $y=u o v(x)=u[v(x)]$, then

$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u\{v(x)\}}{\mathrm{d}\{v(x)\}} \times \frac{\mathrm{d}}{\mathrm{d} x} v(x)
$

is known as the chain rule. Or,

$
\text { If } y=f(u) \text { and } u=g(x) \text {, then } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \cdot \frac{\mathrm{d} u}{\mathrm{~d} x}
$
The chain rule can be extended as follows
If $y=[\operatorname{uovow}(x)]=u[v\{w(x)\}]$, then

$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}[u[v\{w(x)\}]}{\mathrm{d} v\{w(x)\}} \times \frac{\mathrm{d}[v\{w(x)\}]}{\mathrm{d} w(x)} \times \frac{\mathrm{d}[w(x)]}{\mathrm{d} x}
$

Recommended Video Based on Rules of Differentiation


Solved Examples Based On Rules of Differentiation

Example 1: Let $y=\sin ^2 x+2 \cos ^3 2 x$, then $\mathrm{dy} / \mathrm{dx}$ equals
1) $
\sin 2 x+12 \sin 2 x \cos ^2 2 x
$

2) $
\cos ^{2 x}+6 \cos ^2 2 x
$

3) $
\sin 2 x-12 \sin 2 x \cos ^2 2 x
$

4) $
\cos ^{2 x}+6 \sin ^2 2 x
$

Solution:

The rule for differentiation-
The derivative of the sum or difference of two functions is the sum or difference of their derivatives.

$
\begin{aligned}
& \frac{d}{d x} f(x) \pm g(x)=\frac{d}{d x} f(x) \pm \frac{d}{d x} g(x) \\
& y=\sin ^2 x+2 \cos ^3 2 x \Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(\sin ^2 x+2 \cos ^3 2 x\right) \\
& =\frac{d}{d x} \sin ^2 x+\frac{d}{d x} 2 \cos ^3 2 x=\frac{d}{d x}(\sin x)^2+2 \frac{d}{d x}(\cos 2 x)^3 \\
& =\frac{d(\sin x)}{d x} \frac{d\left(\sin ^2 x\right)}{d(\sin x)}+2 \frac{d(\cos 2 x)^3}{d(\cos 2 x)} \cdot \frac{d(2 x)}{d x} \\
& =2 \sin x \cos x+2 * 3(\cos x)^2 *(-\sin 2 x) * 2 \\
& =\sin 2 x-12 \sin 2 x \cos ^2 x
\end{aligned}
$

Hence, the answer is the option 3.

Example 2: The value of $\log _e 2 \frac{d}{d x}\left(\log _{\cos x} \operatorname{cosec} x\right)$ at $x=\frac{\pi}{4}$ is
[JEE Main 2022]
1) $-2 \sqrt{2}$
2) $2 \sqrt{2}$
3) $-4$
4) $4$

Solution:

$
\begin{aligned}
& \log 2 \cdot \frac{d}{d x}\left(\frac{\log (\operatorname{cosec} x)}{\log (\cos x)}\right) \\
& =-\log 2 \cdot \frac{d}{d x}\left(\frac{\log (\sin x)}{\log (\cos x)}\right) \\
& =-\log 2 \cdot \frac{\log (\cos x) \cdot \frac{\cos x}{\sin x}-\log (\sin x) \frac{(-\sin x)}{\cos x}}{(\log \cos x)^2}
\end{aligned}
$
At $\mathrm{x}=\frac{\pi}{4}$

$
\begin{aligned}
& =-\log 2 \cdot \frac{\log \left(\frac{1}{\sqrt{2}}\right)+\log \left(\frac{1}{\sqrt{2}}\right)}{\left(\log \left(\frac{1}{\sqrt{2}}\right)\right)^2} \\
& =-\log 2 \cdot \frac{\left(2 \log \left(\frac{1}{\sqrt{2}}\right)\right)}{\left(\log \left(\frac{1}{\sqrt{2}}\right)\right)^2}
\end{aligned}
$
$\begin{aligned} & =\frac{-\log 2 \cdot 2}{\log \left(\frac{1}{\sqrt{2}}\right)} \\ & =\frac{-2 \log 2}{-\log (\sqrt{2})} \\ & =\frac{2 \log 2}{\frac{1}{2} \log 2} \\ & =4\end{aligned}$
Hence, the answer is the option (4).

Example 3: The minimum value of $\alpha$ for which the equation $\frac{4}{\sin x}+\frac{1}{1-\sin x}=\alpha$ has at least one solution in $\left(0, \frac{\pi}{2}\right)$ is
[JEE Main 2021]
1) $7$
2) $8$
3) $9$
4) $10$

Solution:
Let $f(x)=\frac{4}{\sin x}+\frac{1}{1-\sin x}$

$
y=\frac{4-3 \sin x}{\sin x(1-\sin x)}
$
Let $\sin \mathrm{x}=\mathrm{t}$ when $t \in(0,1)$.

$
y=\frac{4-3 t}{t-t^2}
$

$\begin{aligned} & \frac{d y}{d t}=\frac{-3\left(t-t^2\right)-(1-2 t)(4-3 t)}{\left(t-t^2\right)^2}=0 \\ & \Rightarrow 3 \mathrm{t}^2-3 \mathrm{t}-\left(4-11 \mathrm{t}+6 \mathrm{t}^2\right)=0 \\ & \Rightarrow 3 \mathrm{t}^2-8 \mathrm{t}+4=0 \\ & \Rightarrow 3 \mathrm{t}^2-6 \mathrm{t}-2 \mathrm{t}+4=0 \\ & \Rightarrow \mathrm{t}=\frac{2}{3} \quad \text { and } \quad \mathrm{t} \neq 2 \\ & \frac{4}{\sin x}+\frac{1}{1-\sin x}=\alpha \\ & \frac{12}{2}+\frac{3}{3-2}=\alpha \\ & \alpha=9\end{aligned}$

Hence, the answer is the option 3.

Example 4: Let $f$ and $g$ be differentiable functions on $R$ such that $f o g$ is the identity function. If for some $a, b \in \mathbf{R}, g^{\prime}(a)=5$ and $g(a)=b {\text { then }} f^{\prime}(b)$ is equal to [JEE Main 2020]
1) $\frac{2}{5}$
2) $5$
3) $1$
4) $\frac{1}{5}$

Solution:

Let $f$ and $g$ be functions. For all $x$ in the domain of $g$ for which $g$ is differentiable at $x$ and $f$ is differentiable at $g(x)$, the derivative of the composite function

$
\begin{aligned}
& h(x)=(f \circ g)(x)=f(g(x)) \text { Is given by } \\
& h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
\end{aligned}
$
Composites of Three or More Functions
For all values of $x$ for which the function is differentiable, if $k(x)=h(f(g(x)))$ Then,

$
\begin{aligned}
& k^{\prime}(x)=h^{\prime}(f(g(x))) \cdot f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& f(g(x))=x \\
& \Rightarrow f^{\prime}(g(x)) \cdot g^{\prime}(x)=1 \\
& P u t x=a \\
& \Rightarrow f^{\prime}(g(a)) g^{\prime}(a)=1 \\
& \Rightarrow f^{\prime}(b) \times 5=1 \Rightarrow f^{\prime}(b)=\frac{1}{5}
\end{aligned}
$

Example 5: If $f(x)=\sin ^{-1}\left(\frac{2 \times 3^x}{1+9^x}\right)$, then $f^{\prime}\left(-\frac{1}{2}\right)$ equals
[JEE Main 2018]
1) $-\sqrt{3} \log _e \sqrt{3}$
2) $\sqrt{3} \log \sqrt{3}$
3) $-\sqrt{3} \log _e 3$
4) $\sqrt{3} \log _e 3$

Solution:
As we learned,
Chain Rule for differentiation (indirect) -
Let $y=f(x)$ is not in standard form then

$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$

Now

$\begin{aligned} & f(x)=\sin ^{-1}\left(\frac{2 \times 3^x}{1+9^x}\right) \\ & =2 \tan ^{-1} 3^x \\ & \because 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^2} \quad \text { if }-1 \leq x \leq 1 \\ & \frac{d}{d u}(\arctan (u))=\frac{1}{u^2+1} \\ & \frac{d}{d x}\left(3^x\right)=\ln (3) \cdot 3^x \\ & f^{\prime}(x)=2 \times \frac{1}{1+\left(3^x\right)^2} \times 3^x \times \ln 3 \\ & f^{\prime}\left(\frac{-1}{2}\right)=2 \times \frac{1}{1+\left(3^{-1}\right)} \times 3^{\frac{-1}{2}} \times \ln 3 \\ & =2 \times \frac{3}{4} \times \frac{1}{\sqrt{3}} \times \ln 3 \\ & =\sqrt{3} \times \frac{1}{2} \ln 3\end{aligned}$

Hence, the answer is the option 2.

Summary

The differentiation rules help us to evaluate the derivatives of some particular functions. Some important rules are the sum rule, product rule, chain rule, etc. Differentiation is an important concept of Calculus. It provides a deeper understanding of mathematical ideas paramount for later developments in many scientific and engineering disciplines.


Frequently Asked Questions (FAQs)

1. What are the 7 rules of differentiation?

 The 7 rules of differentiation are the Power Rule, Sum rule,  Difference Rule, Constant Multiple Rule, Product Rule, Quotient Rule and Chain Rule.

2. What is the chain rule in differentiation?

 The chain rule, states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.

3. What is the derivative of $2x$?

The derivative of $2x$ is $2$.

4. What is the sum rule?

The derivative of the sum of a function $f$ and a function $g$ is the same as the sum of the derivative of $f$ and the derivative of $g$.

5. What is the product rule?

Product rule means that the derivative of a product of two functions is the derivative of the first function times the second function plus the derivative of the second function times the first function.

Articles

Get answers from students and experts
Back to top