Imagine you’re sharing a box of chocolates with friends. Each friend picks a different mix - some take more dark chocolates, some choose more milk chocolates—and suddenly you realise there’s a pattern in how many unique combinations can be made. This simple idea of mixing and matching is exactly how binomial expansion works. And when you want to locate a specific term—like the one right in the middle or any general term—you rely on clear formulas that make the process quick and predictable. In this article, you’ll learn the meaning of general and middle terms in binomial expansion, the formulas you need, step-by-step examples, and smart shortcuts that help you score higher in competitive exams where these questions frequently appear in mathematics section.
This Story also Contains
- General Term in Binomial Expansion
- Middle Term in Binomial Expansion
- Solved Examples Based on General and Middle Terms in Binomial Expansion:
- List of Topics related to Binomial Theorem
- NCERT Resources
- Practice Questions based on the General Term and the Middle Term of Binomial Expansion
General and Middle Terms in Binomial Expansion
General Term in Binomial Expansion
A binomial expression is any algebraic expression containing exactly two terms. These expressions commonly appear in algebra, JEE-level questions, CUET exams, and competitive math problems.
Examples of binomial expressions include:
$ (a+b)^2,\ \left(\sqrt{x}+\dfrac{k}{x^2}\right)^5,\ (x+9y)^{-2/3} $
When expanding $(x+y)^n$, we often need only one specific term instead of the full expansion. The $(r+1)^{\text{th}}$ term is called the general term, given by:
$T_{r+1} = {}^nC_r \cdot x^{n-r} \cdot y^r$
This formula helps quickly extract any required term—very helpful in competitive exams.
Term Independent of $x$
A term is independent of $x$ when its power of $x$ becomes zero, i.e., $x^0$.
Example: Find the term independent of $x$ in $(x - \dfrac{1}{x})^{20}$.
[
T_{r+1} = {}^{20}C_r \cdot x^{20-r} \cdot (-1)^r \cdot x^{-r}
]
[
T_{r+1} = {}^{20}C_r \cdot x^{20 - 2r} \cdot (-1)^r
]
To make exponent of $x$ equal to zero:
$20 - 2r = 0 \Rightarrow r = 10$
So, the term independent of $x$ is the $11^{\text{th}}$ term.
$(p+1)$th Term From the End
The binomial expansion of $(x+y)^n$ is:
$ {}^nC_0 x^n + {}^nC_1 x^{n-1}y + {}^nC_2 x^{n-2}y^2 + \cdots + {}^nC_n y^n $
From the Beginning
$ \underbrace{{}^nC_0 x^n}{1^{st}} + \underbrace{{}^nC_1 x^{n-1}y}{2^{nd}} + \underbrace{{}^nC_2 x^{n-2}y^2}{3^{rd}} + \cdots + \underbrace{{}^nC_n y^n}{(n+1)^{th}} $
From the End
$ \underbrace{{}^nC_0 y^n}{1^{st}} + \underbrace{{}^nC_1 y^{n-1}x}{2^{nd}} + \underbrace{{}^nC_2 y^{n-2}x^2}{3^{rd}} + \cdots + \underbrace{{}^nC_n x^n}{(n+1)^{th}} $
Using the identity:
$ {}^nC_r = {}^nC_{n-r} $
So the $(p+1)^{\text{th}}$ term from the end of $(x+y)^n$ equals the $(p+1)^{\text{th}}$ term from the beginning of $(y+x)^n$:
$ T_{p+1} = {}^nC_p \cdot y^{,n-p} \cdot x^p $
Radical-Free or Rational Terms
In an expansion like $(x^{1/a} + y^{1/b})^N$, a term is rational only if the exponents of $x$ and $y$ are integers.
General term:
$T_{r+1} = {}^N C_r \cdot x^{\frac{N-r}{a}} \cdot y^{\frac{r}{b}}$
Example: Number of rational terms in $(\sqrt[4]{9} + \sqrt[6]{8})^{100}$
Rewrite in prime form:
$\sqrt[4]{9} = 3^{1/2}$
$\sqrt[6]{8} = 2^{1/2}$
General term:
$T_{r+1} = {}^{100}C_r \cdot 3^{50 - r/2} \cdot 2^{r/2}$
For the indices to be integers:
$\dfrac{r}{2} \in \mathbb{Z} \Rightarrow r$ must be even.
Possible values:
$r = 0, 2, 4, …, 100$
Number of values = $50 + 1 = 51$
So, 51 rational terms exist.
Middle Term in Binomial Expansion
The middle term(s) depend on whether $n$ is even or odd.
Case 1: $n$ Even
Total terms = $n+1$ → odd → one middle term
Position:
$\left(\dfrac{n}{2} + 1\right)^{th}$
Middle term:
$T_{\frac{n}{2}+1} = \binom{n}{\frac{n}{2}} x^{\frac{n}{2}} y^{\frac{n}{2}}$
Case 2: $n$ Odd
Total terms = $n+1$ → even → two middle terms
Positions:
$\left(\dfrac{n+1}{2}\right)^{th},\quad \left(\dfrac{n+3}{2}\right)^{th}$
Values:
$T_{\frac{n+1}{2}} = \binom{n}{\frac{n-1}{2}} x^{\frac{n+1}{2}} y^{\frac{n-1}{2}}$
$T_{\frac{n+3}{2}} = \binom{n}{\frac{n+1}{2}} x^{\frac{n-1}{2}} y^{\frac{n+1}{2}}$
Note on Largest Binomial Coefficient
If $n$ is even, the maximum value occurs at ${}^nC_{n/2}$
If $n$ is odd, the two equal maximum values occur at:
$ {}^nC_{(n-1)/2} $ and $ {}^nC_{(n+1)/2} $
Solved Examples Based on General and Middle Terms in Binomial Expansion:
Example 1: The sum of the real values of $x$ for which the middle term in the binomial expansion of $\left(\frac{x^3}{3}+\frac{3}{x}\right)^8$ equals 5670 is :
1) 6
2) 4
3) 0
4) 8
Solution: Middle term in Binomial Expression if n is even
$\left(\frac{n}{2}+1\right)_{\text {th term is middle term }}$
And it equals ${ }^n C_{\frac{n}{2}} \cdot x^{\frac{n}{2}} \cdot y^{\frac{n}{2}}$
Now,
The middle term can be written as
$
\begin{aligned}
& T_5={ }^8 C_4\left(\frac{x^3}{3}\right)^4\left(\frac{3}{x}\right)^4=5670 \\
& \Rightarrow 70 x^8=5670 \\
& \Rightarrow x^8=81 \\
& \Rightarrow x= \pm \sqrt{3}
\end{aligned}
$
The sum of real values $=0$
Hence, the answer is the option 3.
Example 2: In the binomial expansion of $(a-b)^n, n \geq 5$, the sum of $5^{\text {th }}$ and $6^{\text {th }}$ terms is zero, then $a / b$ equals:
1) $\frac{n-5}{6}$
2) $\frac{n-4}{5}$
3) $\frac{5}{n-4}$
4) $\frac{6}{n-5}$
Solution
As we learned in
General Term in the expansion of $(x+a)^n$
$
T_{r+1}={ }^n C_r \cdot x^{n-r} \cdot a^r
$
Now,
$
\begin{aligned}
& \text { In }(\mathrm{a}-\mathrm{b})^{\mathrm{n}} \\
& T_5={ }^n C_4(a)^{n-4}(-b)^4 \text { and } T_6={ }^n C_5(a)^{n-5}(-b)^5 \\
& \mathrm{~T}_5+\mathrm{T}_6=0 \\
& { }^n C_4(a)^{n-4}(b)^4={ }^n C_5(a)^{n-5}(b)^5 \\
& \frac{a}{b}=\frac{{ }^n C_5}{{ }^n C_4}=\frac{\frac{n!}{5!(n-5)!}}{\frac{n!}{4!(n-4)!}}=\frac{n-4}{5}
\end{aligned}
$
Hence, the answer is an option (2).
Example 3: The coefficient of $x^7$ in the expansion of $\left(1-x-x^2+x^3\right)^6$ is
1) -144
2) 132
3) 144
4) -132
Solution
As we learnt in
General Term in the expansion of $(x+a)^n$
$
T_{r+1}={ }^n C_r \cdot x^{n-r} \cdot a^r
$
Now,
We have to simplify $\left(1-x-x^2+x^3\right)^6$
We get $\left[(1-x)-x^2(1-x)\right]^6$
$
\begin{aligned}
& =\left[(1-x)\left(1-x^2\right)\right]^6 \\
& =(1-x)^6\left(1-x^2\right)^6
\end{aligned}
$
For a coefficient of $\mathrm{x}^7$ in $(1-x)^6\left(1-x^2\right)^6$
$
\begin{aligned}
& =\left(1-{ }^6 C_1 x+{ }^6 C_2 x^2 \ldots \ldots \ldots \ldots \ldots\right)\left(1-{ }^6 C_1 x^2+{ }^6 C_2 x^4-{ }^6 C_3 x^6 \ldots \ldots \ldots \ldots\right) \\
& ={ }^6 C_1 \cdot{ }^6 C_3-{ }^6 C_3 \cdot{ }^6 C_2+{ }^6 C_5 \cdot{ }^6 C_1 \\
& =120-300+36=-144
\end{aligned}
$
Hence, the answer is the option 1.
Example 4: The term independent of $x$ in expansion of $\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$ is :
1) 310
2) 4
3) 120
4) 210
Solution
Now,
$
\begin{aligned}
& S=\left(\frac{\left(x^{1 / 3}+1\right)\left(x^{2 / 3}-x^{1 / 3}+1\right)}{\left(x^{2 / 3}-x^{1 / 3}+1\right)}-\frac{\left(x^{1 / 2}-1\right)\left(x^{1 / 2}+1\right)}{x^{1 / 2}\left(x^{1 / 2}-1\right)}\right)^{10} \\
& =\left(\left(x^{1 / 3}+1\right)-\left(1+x^{-1 / 2}\right)\right)^{10} \\
& =\left(x^{1 / 3}-x^{-1 / 2}\right)^{10} \\
& T_{r+1}={ }^{10} C_r\left(x^{1 / 3}\right)^{10-r}\left(-x^{-1 / 2}\right)^r \\
& =(-1)^r \cdot{ }^{10} C_r \cdot x^{\frac{10-r}{3}-\frac{r}{2}}
\end{aligned}
$
For term independent of $x$,
$
\Rightarrow \quad \frac{10-r}{3}-\frac{r}{2}=0 \Rightarrow 5 r=20
$
So, $T_{r+1}={ }^{10} C_4=210$
Hence, the answer is the option (4).
$x^7$ in $\left[a x^2+\left(\frac{1}{b x}\right)\right]^{11}$ equals the coefficient of $x^{-7}$ in $\left[a x-\left(\frac{1}{b x^2}\right)\right]^{11}$, if $a=1 / 2$, then $b=$
1)$1 / 2$
2)1
3) (correct)
2
4)None of these
$
\begin{aligned}
& T_{r+1} \text { of }\left(a x^2+\frac{1}{b x}\right)^{11}={ }^{11} C_r\left(a x^2\right)^{11-r}\left(\frac{1}{b x}\right)^r \\
& T_{r+1} \text { of }\left(a x-\frac{1}{b x^2}\right)^{11}={ }^{11} C_r(a x)^{11-r}\left(-\frac{1}{b x^2}\right)^r
\end{aligned}
$
$\therefore$ Coefficient of $x^7$ in $\left(a x^2+\frac{1}{b x}\right)^{11}={ }^{11} C_5 \frac{a^6}{b^5}$ and coefficient of $x^{-7}$ in $\left(a x-\frac{1}{b x^2}\right)^{11}={ }^{11} C_6 \frac{a^5}{b^6}$ Now ${ }^{11} C_5 \frac{a^6}{b^5}={ }^{11} C_6 \frac{a^5}{b^6} \quad \therefore a b=1$.
Hence, the answer is the option(3).
List of Topics related to Binomial Theorem
This section gives you a quick overview of all key subtopics connected to the Binomial Theorem, helping you understand what to study and how each concept fits into algebra and competitive exam preparation.
Binomial Theorem for any Index
Binomial Inside Binomial
Important Results of Binomial Theorem for any Index
Last Digits and Remainder using the Binomial Expansion
Greatest Binomial Coefficient
Practice Questions based on the General Term and the Middle Term of Binomial Expansion
Here, you’ll get exam-focused practice questions that test your understanding of general term, middle term, term-independent-of-x, and related concepts—ideal for JEE, CUET, and school board exam revision.
General And Middle Terms- Practice Question MCQ
We have shared below the links to practice questions for the topics related to binomial theorem: