In the homogeneous system of linear equations, the constant term in every equation is equal to 0 . i.e., no equation in such systems has a constant term in it. A homogeneous linear system may have one or infinitely many solutions. But it has at least one solution always. In real life, we use a Homogenous system of linear equations to solve the system of linear equations which helps us to solve age-related problems and time related problems.
JEE Main 2025: Sample Papers | Mock Tests | PYQs | Study Plan 100 Days
JEE Main 2025: Maths Formulas | Study Materials
JEE Main 2025: Syllabus | Preparation Guide | High Scoring Topics
In this article, we will cover the concept of a Homogenous system of linear equations. This category falls under the broader category of Matrices, which is a crucial Chapter in class 12 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination(JEE Main) and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Questions based on this topic have been asked frequently in JEE Mains
A system of linear equations are group of $n$ linear equations containing $n$ number of variables.
1. System of 2 Linear Equations:
It is a pair of linear equations in two variables. It is usually of the form
$a_1x +b_1y + c_1 = 0$
$a_2x +b_2y + c_2 = 0$
Finding a solution for this system means finding the values of $x$ and $y$ that satisfy both equations.
2. System of 3 Linear Equations:
It is a group of 3 linear equations in three variables. It is usually of the form
$a_1x +b_1y + +c_1z + d_1 = 0$
$a_2x +b_2y + +c_2z + d_2 = 0$
$a_3x +b_3y + +c_3z + d_3 = 0$
Finding a solution for this system means finding the values of $x, y$, and $z$ that satisfy all three equations.
Note that $x=y=z=0$ will always satisfy this system of equations. So system of homogeneous equations will always have at least one solution.
Also, the solution $x=0, y=0$, and $z=0$ is called a trivial solution, and other solutions are called non-trivial solutions.
$\\\mathrm{Let,} \\\mathrm{a_1x+b_1y +c_1z=0\;\;\; ...(i)} \\\mathrm{a_2x+b_2y +c_2z=0\;\;\; ...(ii)} \\\mathrm{a_3x+b_3y +c_3z=0\;\;\; ...(iii)} \\\mathrm{be \; three\; homogeneous\; equation} \\\mathrm{and \; let\; \Delta = \begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix}}$
If $\Delta\neq 0$, then $x=0, y=0, z=0$ is the only solution of the above system. This solution is also known as a trivial solution.
If $\Delta=0$, at least one of $x, y$ and $z$ are non-zero. This solution is called a non-trivial solution.
Explanation: using equation (ii) and (iii), we have$\\\mathrm{\frac{x}{b_2c_3-b_3c_2} = \frac{y}{c_2a_3-c_3a_2}=\frac{z}{a_2b_3-a_3b_2}} \\\\\mathrm{or \;\; \frac{x}{\begin{vmatrix} b_2 &c_2 \\ b_3 & c_3 \end{vmatrix}}=\frac{y}{\begin{vmatrix} c_2 &a_2 \\ c_3 & a_3 \end{vmatrix}} = \frac{z}{\begin{vmatrix} a_2 & b_2\\ a_3 & b_3 \end{vmatrix}} = k (say \neq 0)} \\\mathrm{\therefore x = k\begin{vmatrix} b_2 &c_2 \\ b_3 & c_3 \end{vmatrix}, y = k\begin{vmatrix} c_2& a_2\\ c_3 & a_3 \end{vmatrix} \; and \; z = k\begin{vmatrix} a_2 & b_2\\ a_3 & b_3 \end{vmatrix}} \\\mathrm{putting\; these\; value\; in \; equation \; (i), we\; have} \\\mathrm{a_1\left \{ k\begin{vmatrix} b_2 & c_2\\ b_3 & c_3 \end{vmatrix} \right \}+b_1\left \{ k\begin{vmatrix} c_2 & a_2\\ c_3 & a_3 \end{vmatrix} \right \}+c_1\left \{ \begin{vmatrix} a_2 & b_2\\ a_3 & b_3 \end{vmatrix} \right \}=0}$
$\\\mathrm{\Rightarrow a_1\begin{vmatrix} b_2 &c_2 \\ b_3 & c_2 \end{vmatrix}-b_1\begin{vmatrix} a_2 & c_2\\ a_3 &c_3 \end{vmatrix}+c_1\begin{vmatrix} a_2 &b_2 \\ a_3 &b_3 \end{vmatrix} = 0 \;\;\;[\because \; k \neq 0]} \\\mathrm{or \;\; \begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix} = 0 \; or \; \Delta = 0}$
This is the condition for a system to have a Non-trivial solution.
A linear equation with a constant value not equal to zero is called a homogeneous equation.
Summary
A homogenous system of equations helps us to characterize the equation and also tells us about the solution of linear equations. A system of linear equations helps us to solve time and age-based problems.
Recommended Video :
Example 1:
Let $\theta \in \left ( 0,\frac{\pi }{2} \right ).$if the system of linear equations.
$\left ( 1+\cos ^{2}\theta \right )x+\sin ^{2}\theta y+4\sin 3\theta z= 0$
$\cos ^{2}\theta x + \left ( 1+\sin ^{2}\theta \right )y+4\sin 3\theta z= 0$
$\cos ^{2}\theta x + \sin ^{2}\theta y+\left ( 1+4\sin 3\theta \right )z= 0$
has a non-trivial solution, then the value of $\theta$is : [JEE MAINS 2021]
Solution
For non-trivial solution $\Delta = 0$
$\Rightarrow \begin{vmatrix} 1+\cos ^{2}\theta& \sin ^{2}\theta &4\sin 3\theta \\ \cos ^{2}\theta&1+\sin ^{2}\theta &4\sin 3\theta \\ \cos ^{2}\theta&\sin ^{2}\theta & 1+4\sin 3\theta \end{vmatrix}= 0$
$R_{3}\rightarrow R_{3}-R_{2},R_{2}\rightarrow R_{2}-R_{1}$
$\Rightarrow \begin{vmatrix} 1+\cos ^{2}\theta& \sin ^{2} \theta&4\sin 3\theta \\ -1& 1&0 \\ 0 & -1 & 1 \end{vmatrix}= 0$
$\Rightarrow \left ( 1+\cos ^{2}\theta \right )-\sin ^{2} \theta\left ( -1 \right )+4\sin 3\theta= 0$
$\Rightarrow 2+4 \sin 3\theta= 0$
$\Rightarrow \sin 3\theta= \frac{-1}{2}$
$\Rightarrow 3\theta= \frac{7\pi}{6},\frac{11\pi}{6}$
$\Rightarrow \theta= \frac{7\pi}{18},\frac{11\pi}{18}$
$But\: \frac{11\pi}{18}\not\in\left ( 0,\frac{\pi}{2} \right )$
$\Rightarrow \theta= \frac{7\pi}{18}$
Example 2 :
If $\alpha+\beta+\gamma=2 \pi,$ then the system of equations
$x+(\cos \gamma) y+(\cos \beta) z=0$
$(\cos \gamma) x+y+(\cos \alpha) z=0$
$(\cos \beta) x+(\cos \alpha) y+z=0$
has: [JEE MAINS 2021]
Solution
$\alpha +\beta +\gamma =2\pi$
$\\ \Delta =\begin{vmatrix} 1 & \cos\gamma &\cos \beta \\ \cos\gamma & 1 & \cos \alpha \\ \cos\beta & \cos \alpha & 1 \end{vmatrix}\\$
$=1+2\cos\alpha \cos\beta \cos\gamma -\cos^{2}\beta -\cos^{2}\alpha -\cos^{2}\gamma \\$
$Let \; \gamma =2\pi-\alpha -\beta \\$
$\Rightarrow \Delta =1+2\cos\alpha \cos\beta \cos\left ( \alpha +\beta \right )-\cos^{2}\left ( \alpha +\beta \right )\\$
$=1+2\cos\alpha \cos\beta \left [ \cos\alpha \cos\beta -\sin\alpha \sin\beta \right ]-\cos^{2}\alpha -\cos^{2}\beta\\$
$-\left [ \cos\alpha \cos\beta -\sin\alpha \sin\alpha \right ]^{2}\\$
$=1+2\cos^{2}\alpha \cos^{2}\beta -2\sin\alpha \sin\beta \cos\alpha \cos\beta -\cos^{2}\alpha -\cos^{2}\beta \\$
$-\cos^{2}\alpha \cos^{2}\beta -\sin^{2}\alpha \sin^{\beta }+2\sin\alpha \sin\beta \cos\alpha \cos\beta \\$
$= 1-\cos^{}\alpha -\cos^{\beta }+\cos^{2}\alpha \cos^{2}\beta -\sin^{2}\alpha \sin^{2}\beta \\$
$=\left ( 1-\cos^{2}\alpha \right )\left ( 1-\cos^{2}\beta \right )-\sin^{2}\alpha \sin^{}\beta \\$
$=\sin^{2}\alpha \sin^{2}\beta -\sin^{2}\alpha \sin^{2}\beta=0$
Example 3:
The following system of linear equations
$7x+6y-2z=0$
$3x+4+2z=0$
$x-2y-6z=0$ has [JEE MAINS 2020]
Solution
$\begin{aligned} &(1)\;\;7 x+6 y-2 z=0\\ &(2)\;\;3 x+4 y+2 z=0\\ &(3)\;\;x-2 y-6 z=0 \end{aligned}$
$\left|\begin{array}{ccc}{7} & {6} & {-2} \\ {3} & {4} & {2} \\ {1} & {-2} & {-6}\end{array}\right| =7(-20)-6(-20)-2(-10)=-140+120+20=0$
so infinite non-trivial solutions exist
now equation (1) +3 equation (3)
$
\begin{aligned}
& 10 x-20 z=0 \\
& x=2 z
\end{aligned}
$
Example 4:
Consider the system of equations:
$x+ay=0, \; y+az=0$ and $z+ax=0$ . Then the set of all real values of 'a' for which the system has a unique solution is: [JEE MAINS 2013]
Solution
Given system of equation is homogeneous, which is:
$
\begin{aligned}
& x+a y=0 \\
& y+a z=0 \\
& z+a x=0 \\
& A=\left|\begin{array}{lll}
1 & a & 0 \\
0 & 1 & a \\
a & 0 & 1
\end{array}\right| \\
& |\mathrm{A}|=\left[1-a\left(-a^2\right)\right]=1+a^3 \neq 0
\end{aligned}
$
Then, the system has only a trivial solution.
Now, $|\mathrm{A}|=0$ only when $a=-1$.
So, for a unique solution, a should not be equal to -1 .
Example 5: If the system of equations
$2 x+3 y-z=0, x+k y-2 z=0$ and $2 x-y+z=0$ has a non-trivial solution $(x, y, z)$, then $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+k$ is equal to: [JEE MAINS 2019]
Solution
Cramer's rule for solving system of linear equations -
When $\Delta=0$ and $\Delta_1=\Delta_2=\Delta_3=0$,
then the system of equations has infinite solutions.
wherein
$
\begin{aligned}
& a_1 x+b_1 y+c_1 z=d_1 \\
& a_2 x+b_2 y+c_2 z=d_2 \\
& a_3 x+b_3 y+c_3 z=d_3
\end{aligned}
$
and
$
\Delta=\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|
$
$\Delta_1, \Delta_2, \Delta_3$ are obtained by replacing column 1,2,3 of $\Delta$ by $\left(d_1, d_2, d_3\right)$ column
for non-trivial solution $\mathrm{A}=0$
$
\left|\begin{array}{ccc}
2 & 3 & -1 \\
1 & k & -1 \\
2 & -1 & 1
\end{array}\right|=0
$
$\begin{aligned} & 2(k-2)-3(1+4)-1(-1-2 k)=0 \\ & 2 k-4-15+1+2 k=0 \\ & 4 k=18 \\ & k=\frac{9}{2} \\ & 2 x+3 y-z=0 \\ & x=\frac{z-3 y}{2} \\ & 2 x+2 y-2=0-----(I) \\ & x+\frac{9}{2} y-2 z=0----(I I) \\ & 2 x-y+z=0-----(I I I) \\ & \text { from }(I) \text { and }(I I) \\ & I+I I I \\ & 4 x+2 y=0 \\ & 2 y=-4 x\end{aligned}$
$\begin{aligned} & \frac{x}{y}=-\frac{2}{4}=-\frac{1}{2} \\ & I-I I I \\ & 4 y=2 z \\ & \frac{y}{z}=\frac{2}{4}=\frac{1}{2} \\ & I+3(I I I) \\ & =8 x+2 z=0 \\ & 8 x=-2 z \\ & \frac{x}{z}=\frac{-1}{4} \\ & \text { so } \\ & \frac{x}{y}+\frac{y}{z}+\frac{z}{x}+k= \\ & \frac{-1}{2}+\frac{1}{2}-4+\frac{9}{2}\end{aligned}$
$\frac{1}{2}$
Summary
A homogenous system of equations helps us to characterize the equation and also tells us about the solution of linear equations. A system of linear equations helps us to solve time and age-based problems.
11 Oct'24 12:33 PM
11 Oct'24 12:30 PM
11 Oct'24 12:28 PM
11 Oct'24 12:26 PM
11 Oct'24 12:23 PM
11 Oct'24 12:21 PM
11 Oct'24 12:19 PM
11 Oct'24 12:17 PM
23 Sep'24 07:19 PM