Careers360 Logo
Indefinite Integral Formulas

Indefinite Integral Formulas

Edited By Komal Miglani | Updated on Sep 20, 2024 04:09 PM IST

Integration of indefinite integral is one of the important parts of Calculus, which applies to measuring the change in the function at a certain point. Mathematically, it forms a powerful tool by which slopes of functions are determined, the maximum and minimum of functions found, and problems on motion, growth, and decay, to name a few. These concepts of integration have been broadly applied in branches of mathematics, physics, engineering, economics, and biology.

In this article, we will cover the concept of Integration of indefinite integral. This concept falls under the broader category of Calculus, which is a crucial Chapter in class 12 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination (JEE Main), and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Over the last ten years of the JEE Main exam (from 2013 to 2023), a total of two questions have been asked on this concept, including one in 2014, one in 2018, and one in 2021.

Integration of Indefinite Integral:

Integration is the reverse process of differentiation. In integration, we find the function whose differential coefficient is given. The rate of change of a quantity $y$ concerning another quantity $x$ is called the derivative or differential coefficient of $y$ concerning $x$. Geometrically, the Differentiation of a function at a point represents the slope of the tangent to the graph of the function at that point.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

An intergral for which the limits are not defined is called the indefinite integral. An indefinite integral, denoted as $\int f(x) d x$. It is expressed as $\int f(x) d x=F(x)+C$. where $\mathrm{F}(\mathrm{x})$ is any antiderivative of $\mathrm{f}(\mathrm{x})$ and C is the constant of integration.

Fundamental Formulae (Inverse Trigonometric Functions)
1. $\frac{d}{d x}\left(\sin ^{-1} \frac{x}{a}\right)=\frac{1}{\sqrt{a^2-x^2}} \Rightarrow \int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1}\left(\frac{x}{a}\right)+C$
2. $\frac{d}{d x}\left(\cos ^{-1} \frac{x}{a}\right)=\frac{-1}{\sqrt{a^2-x^2}} \Rightarrow \int \frac{-1}{\sqrt{a^2-x^2}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+C$
3. $\frac{d}{d x}\left(\frac{1}{a} \tan ^{-1} \frac{x}{a}\right)=\frac{1}{a^2+x^2} \Rightarrow \int \frac{d x}{a^2+x^2}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
4. $\frac{d}{d x}\left(\frac{1}{a} \cot ^{-1} \frac{x}{a}\right)=\frac{-1}{a^2+x^2} \Rightarrow \int \frac{-1}{a^2+x^2} d x=\frac{1}{a} \cot ^{-1}\left(\frac{x}{a}\right)+C$
5. $\frac{d}{d x}\left(\frac{1}{a} \sec ^{-1} \frac{x}{a}\right)=\frac{1}{x \sqrt{x^2-a^2}} \Rightarrow \int \frac{d x}{x \sqrt{x^2-a^2}}=\frac{1}{a} \sec ^{-1}\left(\frac{x}{a}\right)+C$
6. $\frac{d}{d x}\left(\frac{1}{a} \csc ^{-1} \frac{x}{a}\right)=\frac{-1}{x \sqrt{x^2-a^2}} \Rightarrow \int \frac{-d x}{x \sqrt{x^2-a^2}}=\frac{1}{a} \csc ^{-1}\left(\frac{x}{a}\right)+C$

Basic integration rules,
(i) $\frac{d}{d x}\left(\frac{x^{n+1}}{n+1}\right)=x^n$;
$\int x^n d x=\frac{x^{n+1}}{n+1}+$ C, $n \neq-1$

Particularly, we note that
$\frac{d}{d x}(x)=1$;
$\int d x=x+C$

(ii) $\frac{d}{d x}(\sin x)=\cos x$;
$\int \cos x d x=\sin x+C$

(iii) $\frac{d}{d x}(-\cos x)-\sin x$;
$\int \sin x d x=-\cos x+\mathrm{C}$

(iv) $\frac{d}{d x}(\tan x)-\sec ^2 x$;
$\int \sec ^2 x d x=\tan x+C$

(v) $\frac{d}{d x}(-\cot x)=\operatorname{cosec}^2 x$;
$\int \operatorname{cosec}^2 x d x=-\cot x+C$

(vi) $\frac{d}{d x}(\sec x)=\sec x \tan x$;
$\int \sec x \tan x d x=\sec x+C$

(vii) $\frac{d}{d x}(-\operatorname{cosec} x)=\operatorname{cosec} x \cot x$;
$\int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+4$

(viii) $\frac{d}{d x}\left(\sin ^{-1} x\right)-\frac{1}{\sqrt{1-x^2}}$;
$\int \frac{d x}{\sqrt{1-x^2}}=\sin ^{-1} x+C$

(ix) $\frac{d}{d x}\left(-\cos ^{-1} x\right)=\frac{1}{\sqrt{1-x^2}}$;
$\int \frac{d x}{\sqrt{1-x^2}}=-\cos ^{-1} x+C$

(x) $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^2}$;
$\int \frac{d x}{1+x^2}=\tan ^{-1} x+C$

(xi) $\frac{d}{d x}\left(-\cot ^{-1} x\right)=\frac{1}{1+x^2} ; \quad \int \frac{d x}{1+x^2}=-\cot ^{-1} x+\mathrm{C}$

Solved Examples based on Indefinite Integral

Example 1: If $\int \frac{2 x+5}{\sqrt{7-6 x-x^2}} d x=A \sqrt{7-6 x-x^2}+B \sin ^{-1}\left(\frac{x+3}{4}\right)+C$ (where C is a constant of integration), then the ordered pair ( A , B ) is equal to :
1) $(2,1)$
2) $(-2,-1)$
3) $(-2,1)$
4) $(2,-1)$

Solution
Integration by perfect square method -

$a x^2+b x+c=a\left[x^2+\frac{b x}{a}+\frac{c}{a}\right]=a\left[\left(x+\frac{b}{2 a}\right)^2+\frac{c}{a}-\frac{b^2}{4 a^2}\right]$

Make the coefficient of $x^2$ +ve one .

and

$\begin{aligned}
& I=\int \frac{2 x+5}{\sqrt{7-6 x-x^2}} d x \\
& =-\int \frac{(-2 x-5)}{\sqrt{7-6 x-x^2}} d x \\
& =-\int \frac{-6-2 x-5+6}{\sqrt{7-6 x-x^2}} d x \\
& =\int\left(-\frac{-2 x-6}{\sqrt{-x^2-6 x+7}}-\frac{1}{\sqrt{-x^2-6 x+7}}\right) \mathrm{d} x \\
& =-2 \sqrt{-x^2-6 x+7}-\int \frac{1}{\sqrt{16-(x+3)^2}} \mathrm{~d} x \\
& =-2 \sqrt{7-6 x-x^2}-\sin ^{-1}\left(\frac{x+3}{4}\right)+C \\
& \mathrm{~A}=-2 ; \mathrm{B}=-1
\end{aligned}$


Hence, the answer is the option 2.

Example 2: If $I_1=\int \frac{d x}{\sqrt{a^2-x^2}}$ and $I_2=\int \cos ^{-1} \frac{x}{a}$ then $I_1+I_2=$ ?

1) \sin^{-1} \frac{x}{a} +c

2) \cos^{-1}\frac{x}{a} + c

3) Constant value

4) None of these

Solution

As we have learnt,

Integrals of inverse circular functions -

$\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{d} x}\left(\sin ^{-1} \frac{x}{a}\right)=\frac{1}{\sqrt{a^2-x^2}} \\
& \therefore \int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1} \frac{x}{a}+c \\
& I_1=\int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1} \frac{x}{a}+c
\end{aligned}$

Also,

$I_1+I_2=\sin ^{-1} \frac{x}{a}+\cos ^{-1} \frac{x}{a}+c=\frac{\pi}{2}+c=C$


Hence, the answer is the option 3.

Example 3: If the value of the integral $\int_0^{\frac{1}{2}} \xrightarrow[\left(1-x^2\right)^{\frac{3}{2}}]{x^2} d x$ is $\frac{k}{6}$ then $k$ is equal to?
1) $2 \sqrt{3}-\pi$
2) $2 \sqrt{3}+\pi$
3) $3 \sqrt{2}+\pi$
4) $3 \sqrt{2}-\pi$

Solution

$\begin{aligned}
& \int_0^{1 / 2} \frac{\left(\left(x^2-1\right)+1\right)}{\left(1-x^2\right)^{3 / 2}} d x \\
& \int_0^{1 / 2} \frac{d x}{\left(1-x^2\right)^{3 / 2}}-\int_0^{1 / 2} \frac{d x}{\sqrt{1-x^2}} \\
& \int_0^{1 / 2} \frac{x^{-3}}{\left(x^{-2}-1\right)^{3 / 2}} d x-\left(\sin ^{-1} x\right)_0^{1 / 2}
\end{aligned}$


Let $x^{-2}-1=t^2 \Rightarrow x^{-3} d x=-t d t$

$\begin{aligned}
& \int_{\infty}^{\sqrt{3}} \frac{-t d t}{t^3}-\frac{\pi}{6}=\int_{\sqrt{3}}^{\infty} \frac{d t}{t^2}-\frac{\pi}{6}=\frac{1}{\sqrt{3}}-\frac{\pi}{6}=\frac{k}{6} \\
& k=2 \sqrt{3}-\pi
\end{aligned}$
Hence, the answer is the option 1 .

Example 4: Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution of the differential equation $x d y-y d x=\sqrt{\left(x^2+y^2\right)} d x, x \geqslant 1$, with $\mathrm{y}(1)=0$. If the area bounded by the line $\mathrm{x}=1, x=e^\pi, y=0$ and $\mathrm{y}=\mathrm{y}(\mathrm{x})$ is $\alpha e^{2 \pi}+\beta$, then the va;ue of $10(\alpha+\beta)$ is equal to $\qquad$
1) $2$
2) $4$
3) $6$
4) $8$

Solution

$\begin{aligned}
& x d y-y d x=\sqrt{x^2-y^2} d x \\
& \Rightarrow \int \frac{x d y-y d x}{x^2}=\frac{1}{x} \sqrt{1-\frac{y^2}{x^2}} d x \\
& \Rightarrow \int \frac{d\left(\frac{y}{x}\right)}{\sqrt{1-\left(\frac{y}{x}\right)^2}}=\int \frac{d x}{x} \\
& \Rightarrow \sin ^{-1}\left(\frac{y}{x}\right)=\ln |x|+c \\
& \text { at } x=1, y=0 \Rightarrow c=0 \\
& y=x \sin (\ln x)
\end{aligned}$

$\begin{aligned}& \mathrm{A}=\int_1^{\mathrm{e}^\pi} \mathrm{x} \sin (\ell \mathrm{nx}) \mathrm{dx} \\
& \mathrm{x}=\mathrm{e}^{\mathrm{t}}, \mathrm{dx}=\mathrm{e}^{\mathrm{t}} d \mathrm{dt} \\
& \Rightarrow \int_0^{\pi^2} \mathrm{e}^{2 \mathrm{t}} \sin (\mathrm{t}) \mathrm{dt}=\mathrm{A} \\
& \alpha \mathrm{e}^{2 \pi}+\beta=\left(\frac{\mathrm{e}^{2 t}}{5}(2 \sin \mathrm{t}-\cos \mathrm{t})\right)_0^\pi=\frac{1+\mathrm{e}^{2 \pi}}{5} \\
& \alpha=\frac{1}{5}, \beta=\frac{1}{5} \text { so } 10(\alpha+\beta)=4
\end{aligned}$
Hence, the answer is the option 2.

Example 5: Evaluate the integral of $\int \frac{1}{5 \sqrt{25-4 x^2}} d x$.
1) $\frac{1}{10} \sin ^{-1} \frac{2 x}{5}+C$
2) $-\frac{1}{4 x} \sec ^{-1} \frac{5}{2 x}+C$
3) $\frac{1}{5} \sec ^{-1} \frac{4 x}{5}+C$
4) $-\frac{1}{5} \sec ^{-1} \frac{4 x}{5}+C$

Solution

Given integral

$\int \frac{1}{5 \sqrt{25-4 x^2}} d x$

Substitute $x=\frac{5}{2} \sin \theta$ and $d x=\frac{5}{2} \cos \theta d \theta$.
$\theta=\sin ^{-1} \frac{2 x}{5}$
$\int \frac{1}{5 \sqrt{25-4 x^2}} d x=\int \frac{1}{5 \sqrt{25-\left(4 \times\left(\frac{5}{2} \sin \theta\right)^2\right)}} \frac{5}{2} \cos \theta d \theta$
$\int \frac{1}{\sqrt{25\left(1-\sin ^2 \theta\right)}} \frac{1}{2} \cos \theta d \theta=\frac{1}{2} \int \frac{1}{5 \cos \theta} \times \cos \theta d \theta$
$\frac{1}{10} \int d \theta=\frac{1}{10} \theta+C$
So, it becomes
$\frac{1}{10} \sin ^{-1} \frac{2 x}{5}+C$

Hence, the answer is option (1).

Summary

Indefinite integration is the most elementary process in calculus for seeking antiderivatives of functions. It reverses the process of differentiation, which finds a function whose derivative equals the original function plus an arbitrary constant. Basic rules of integration allow integration with polynomial functions, exponential functions, trigonometric functions, and so on.

Frequently Asked Questions (FAQs)

1. What is integration?

 Integration is the reverse process of differentiation.

2. What is the other name of integration?

The other name of integration is antiderivative.

3. What is the difference between an indefinite integral and a definite integral?

An indefinite integral represents a family of functions and includes a constant of integration (C), while a definite integral computes the exact area under a curve between two specific points and results in a single numerical value.

4. Do C is present in definite integrals?

No, only indefinite integrals contain a C in the process of integration.

5. What are the bounds of an indefinite integral?

There are no bounds for an indefinite integral.

Articles

sir when i am opening viteee knockout  5000 concepts matrices and its aplication chapter it opens complex number pls do help

they are not showing any option

when is vit entrance examination 2020?

Arrange the following Cobalt complexes in the order of incresing Crystal Field Stabilization Energy (CFSE) value. Complexes :  

\mathrm{\underset{\textbf{A}}{\left [ CoF_{6} \right ]^{3-}},\underset{\textbf{B}}{\left [ Co\left ( H_{2}O \right )_{6} \right ]^{2+}},\underset{\textbf{C}}{\left [ Co\left ( NH_{3} \right )_{6} \right ]^{3+}}\: and\: \ \underset{\textbf{D}}{\left [ Co\left ( en \right )_{3} \right ]^{3+}}}

Choose the correct option :
Option: 1 \mathrm{B< C< D< A}
Option: 2 \mathrm{B< A< C< D}
Option: 3 \mathrm{A< B< C< D}
Option: 4 \mathrm{C< D< B< A}

The type of hybridisation and magnetic property of the complex \left[\mathrm{MnCl}_{6}\right]^{3-}, respectively, are :
Option: 1 \mathrm{sp ^{3} d ^{2} \text { and diamagnetic }}
Option: 2 \mathrm{sp ^{3} d ^{2} \text { and diamagnetic }}
Option: 3 \mathrm{sp ^{3} d ^{2} \text { and diamagnetic }}
Option: 4 \mathrm{sp ^{3} d ^{2} \text { and diamagnetic }}
Option: 5 \mathrm{d ^{2} sp ^{3} \text { and diamagnetic }}
Option: 6 \mathrm{d ^{2} sp ^{3} \text { and diamagnetic }}
Option: 7 \mathrm{d ^{2} sp ^{3} \text { and diamagnetic }}
Option: 8 \mathrm{d ^{2} sp ^{3} \text { and diamagnetic }}
Option: 9 \mathrm{d ^{2} sp ^{3} \text { and paramagnetic }}
Option: 10 \mathrm{d ^{2} sp ^{3} \text { and paramagnetic }}
Option: 11 \mathrm{d ^{2} sp ^{3} \text { and paramagnetic }}
Option: 12 \mathrm{d ^{2} sp ^{3} \text { and paramagnetic }}
Option: 13 \mathrm{sp ^{3} d ^{2} \text { and paramagnetic }}
Option: 14 \mathrm{sp ^{3} d ^{2} \text { and paramagnetic }}
Option: 15 \mathrm{sp ^{3} d ^{2} \text { and paramagnetic }}
Option: 16 \mathrm{sp ^{3} d ^{2} \text { and paramagnetic }}
The number of geometrical isomers found in the metal complexes \mathrm{\left[ PtCl _{2}\left( NH _{3}\right)_{2}\right],\left[ Ni ( CO )_{4}\right], \left[ Ru \left( H _{2} O \right)_{3} Cl _{3}\right] \text { and }\left[ CoCl _{2}\left( NH _{3}\right)_{4}\right]^{+}} respectively, are :
Option: 1 1,1,1,1
Option: 2 1,1,1,1
Option: 3 1,1,1,1
Option: 4 1,1,1,1
Option: 5 2,1,2,2
Option: 6 2,1,2,2
Option: 7 2,1,2,2
Option: 8 2,1,2,2
Option: 9 2,0,2,2
Option: 10 2,0,2,2
Option: 11 2,0,2,2
Option: 12 2,0,2,2
Option: 13 2,1,2,1
Option: 14 2,1,2,1
Option: 15 2,1,2,1
Option: 16 2,1,2,1
Spin only magnetic moment of an octahedral complex of \mathrm{Fe}^{2+} in the presence of a strong field ligand in BM is :
Option: 1 4.89
Option: 2 4.89
Option: 3 4.89
Option: 4 4.89
Option: 5 2.82
Option: 6 2.82
Option: 7 2.82
Option: 8 2.82
Option: 9 0
Option: 10 0
Option: 11 0
Option: 12 0
Option: 13 3.46
Option: 14 3.46
Option: 15 3.46
Option: 16 3.46

3 moles of metal complex with formula \mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{3} gives 3 moles of silver chloride on treatment with excess of silver nitrate. The secondary valency of CO in the complex is_______.
(Round off to the nearest integer)
 

The overall stability constant of the complex ion \mathrm{\left [ Cu\left ( NH_{3} \right )_{4} \right ]^{2+}} is 2.1\times 10^{1 3}. The overall dissociation constant is y\times 10^{-14}. Then y is ___________(Nearest integer)
 

Identify the correct order of solubility in aqueous medium:

Option: 1

Na2S > ZnS > CuS


Option: 2

CuS > ZnS > Na2S


Option: 3

ZnS > Na2S > CuS


Option: 4

Na2S > CuS > ZnS


Back to top