Have you ever wondered how we find an angle when the value of a trigonometric ratio is already known, such as determining the angle of elevation while looking at the top of a tall tower? Situations like these lead us to Inverse Trigonometric Functions, an important concept in Class 12 Mathematics. In Class 12, inverse trigonometric functions are defined as functions that reverse the action of basic trigonometric functions. For example, if $\sin \theta = x$, then $\theta = \sin^{-1} x$. These functions help us find unknown angles from given trigonometric values. A clear understanding of their domain and range is essential to ensure that each inverse function gives a unique value.
This Story also Contains
Inverse trigonometric functions have several real-life applications. They are used in physics to determine angles in motion and waves, in engineering to calculate inclinations and directions, and in navigation and surveying to measure angles accurately. In this article, you will learn about inverse trigonometric functions, including their definitions, formulas, domain and range, and graphs. You will also study the differentiation and integration of inverse trigonometric functions, along with solved examples, notes, and practice questions. These explanations are designed to help you understand the topic easily and prepare confidently for Class 12 board exams and competitive examinations.
Inverse Trigonometric Functions in Mathematics help in finding angles when the values of trigonometric ratios are known. They play a crucial role in calculus and have numerous applications in physics, engineering, and higher mathematics.
Inverse trigonometric functions enable us to find angles when the value of a trigonometric ratio is given. They play an important role in solving problems related to geometry, calculus, and real-life applications.
Inverse trigonometric functions are used to determine an angle from a given trigonometric value. For example, if $\sin \theta = \frac{1}{2}$, then $\theta = \sin^{-1}(\frac{1}{2})$. In inverse trigonometric functions class 12, you will learn how to apply inverse trigonometric functions formulas, understand the domain and range of inverse trigonometric functions, and interpret the graph of inverse trigonometric functions.
Inverse trigonometric functions are the reverse process of the trigonometric functions. In other words, the domain of the inverse function is the range of the original function and vice versa.
For example:
$\sin(\frac{\pi}{6}) = \frac{1}{2}$ ⇒ $\frac{\pi}{6} = \sin^{-1}(\frac{1}{2})$
$\cos(\pi) = -1$ ⇒ $\pi = \cos^{-1}(-1)$
$\tan(\frac{\pi}{4}) = 1$ ⇒ $\frac{\pi}{4} = \tan^{-1}(1)$
Arcsine ($\sin^{-1}$) – Inverse of the sine function
Arccosine ($\cos^{-1}$) – Inverse of the cosine function
Arctangent ($\tan^{-1}$) – Inverse of the tangent function
Arccotangent ($\cot^{-1}$) – Inverse of the cotangent function
Arcsecant ($\sec^{-1}$) – Inverse of the secant function
Arccosecant ($\csc^{-1}$) – Inverse of the cosecant function
These functions are covered in the inverse trigonometric functions class 12 and include important formulas, domain and range explanations, and graphs.
Understanding the domain and range of inverse trigonometric functions is essential for solving problems. Below are the domains and ranges for each inverse function.
To define inverse trigonometric functions properly, the original trigonometric functions must be one-one and onto in the selected domain and range. For example, the sine function is defined for all real numbers, but its inverse is only defined when the domain is restricted to $[-\frac{\pi}{2}, \frac{\pi}{2}]$ and the range to $[-1, 1]$.
Thus,
The domain of $y = \sin^{-1}(x)$ is $[-1, 1]$
The range of $y = \sin^{-1}(x)$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$
The same process applies to other functions like cosine, tangent, secant, etc.
By convention, the domain of inverse trigonometric functions is chosen to ensure the function is one-one and onto. For example, the principal domain for $y = \sin(x)$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$, which makes $y = \sin^{-1}(x)$ well-defined.
| Inverse Trigonometric Function | Domain | Range |
|---|---|---|
| $\sin^{-1}(x)$ (Arcsine) | $[-1, 1]$ | $[-\frac{\pi}{2}, \frac{\pi}{2}]$ |
| $\cos^{-1}(x)$ (Arccosine) | $[-1, 1]$ | $[0, \pi]$ |
| $\tan^{-1}(x)$ (Arctangent) | All real numbers | $(-\frac{\pi}{2}, \frac{\pi}{2})$ |
| $\cot^{-1}(x)$ (Arccotangent) | All real numbers | $(0, \pi)$ |
| $\sec^{-1}(x)$ (Arcsecant) | $(-\infty, -1] \cup [1, +\infty)$ | $[0, \pi], y \neq \frac{\pi}{2}$ |
| $\csc^{-1}(x)$ (Arccosecant) | $(-\infty, -1] \cup [1, +\infty)$ | $[-\frac{\pi}{2}, \frac{\pi}{2}], y \neq 0$ |
The graphs of inverse trigonometric functions are given below:
$y=\sin ^{-1}(x)$
$\sin ^{-1}(x)$ is the inverse of the trignometric function $\sin x$.
$\mathrm{y}=\sin \mathrm{x}, \mathrm{x} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\mathrm{y} \in[-1,1]$

$y=\cos ^{-1}(x)$
$\cos ^{-1}(x)$ is the inverse of $\cos x$

$y=\tan ^{-1}(x)$
$\tan ^{-1}(x)$ is the inverse of $\tan x$.

$y=\operatorname{cosec}^{-1}(x)$
$\operatorname{cosec}^{-1}(x)$ is the inverse of $\operatorname{cosec} x$.

$y=\sec ^{-1}(x)$
$\sec ^{-1}(x)$ is the inverse of $\sec x$.

$y=\cot ^{-1}(x)$
$\cot ^{-1}(x)$ is the inverse of $\cot x$.

This section covers important inverse trigonometric functions formulas, including formulas for negative functions, reciprocal functions, complementary functions, sum and difference of angles, multiple angles, as well as differentiation and integration formulas. These formulas are essential for inverse trigonometric functions class 12 and are helpful in solving calculus problems.
$\sin^{-1}(-x) = -\sin^{-1}(x)$, for all $x \in [-1,1]$
$\tan^{-1}(-x) = -\tan^{-1}(x)$, for all $x \in \mathbb{R}$
$\csc^{-1}(-x) = -\csc^{-1}(x)$, for all $x \in \mathbb{R} - (-1,1)$
$\cos^{-1}(-x) = \pi - \cos^{-1}(x)$, for all $x \in [-1,1]$
$\sec^{-1}(-x) = \pi - \sec^{-1}(x)$, for all $x \in \mathbb{R} - (-1,1)$
$\cot^{-1}(-x) = \pi - \cot^{-1}(x)$, for all $x \in \mathbb{R}$
$\sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1}(x)$, for all $x \in (-\infty,-1] \cup [1,\infty)$
$\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}(x)$, for all $x \in (-\infty,-1] \cup [1,\infty)$
$\tan^{-1}\left(\frac{1}{x}\right) = \begin{cases}\cot^{-1} x, & x>0\ -\pi + \cot^{-1} x, & x<0\end{cases}$
The sum of complementary functions results in a right angle:
$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$, for all $x \in [-1,1]$
$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$, for all $x \in \mathbb{R}$
$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$, for all $x \in (-\infty,-1] \cup [1,\infty)$
Below are the sum and difference formulas of inverse trigonometric functions like $\tan^{-1}$, $\sin^{-1}$, and $\cos^{-1}$. These formulas help in simplifying expressions and solving equations in the inverse trigonometric functions class 12.
$\tan^{-1} x + \tan^{-1} y = \begin{cases} \tan^{-1}\left(\frac{x+y}{1-xy}\right), & x>0, y>0, xy<1\\ \pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right), & x>0, y>0, xy>1\\ -\pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right), & x<0, y<0, xy>1 \end{cases}$
$\tan^{-1} x - \tan^{-1} y = \begin{cases} \tan^{-1}\left(\frac{x-y}{1+xy}\right), & xy > -1\\ \pi + \tan^{-1}\left(\frac{x-y}{1+xy}\right), & x>0, y<0, xy<-1\\ -\pi + \tan^{-1}\left(\frac{x-y}{1+xy}\right), & x<0, y>0, xy<-1 \end{cases}$
$\sin^{-1} x + \sin^{-1} y = \begin{cases} \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & -1 \leq x, y \leq 1, x^2+y^2 \leq 1\\ \pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & x>0, y>0, x^2+y^2>1\\ -\pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & -1 \leq x, y <0, x^2+y^2>1\end{cases}$
$\sin^{-1} x - \sin^{-1} y = \begin{cases} \sin^{-1}\left(x\sqrt{1-y^2} - y\sqrt{1-x^2}\right), & -1 \leq x, y \leq 1, x^2+y^2 \leq 1\\ \pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & x>0, y<0, x^2+y^2>1\\ -\pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & -1 \leq x<0, 0<y\leq1, x^2+y^2>1\end{cases}$
$\cos^{-1} x + \cos^{-1} y = \cos^{-1}\left(xy - \sqrt{1-x^2}\sqrt{1-y^2}\right)$, if $0 < x, y \leq 1$
$\cos^{-1} x - \cos^{-1} y = \begin{cases} \cos^{-1}\left(xy + \sqrt{1-x^2}\sqrt{1-y^2}\right), & 0 \leq x, y \leq 1, x \leq y\\ -\cos^{-1}\left(xy + \sqrt{1-x^2}\sqrt{1-y^2}\right), & 0 < x, y \leq 1, x > y \end{cases}$
Below are the multiple angle formulas of inverse trigonometric functions such as $\sin^{-1}$, $\cos^{-1}$, and $\tan^{-1}$. These formulas are useful for solving advanced problems in inverse trigonometric functions, Class 12, and calculus.
$2\sin^{-1} x = \begin{cases} \sin^{-1}(2x\sqrt{1-x^2}), & -\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}\\ \pi - \sin^{-1}(2x\sqrt{1-x^2}), & x > \frac{1}{\sqrt{2}}\\ -\pi - \sin^{-1}(2x\sqrt{1-x^2}), & x < -\frac{1}{\sqrt{2}} \end{cases}$
$3\sin^{-1} x = \begin{cases} \sin^{-1}(3x - 4x^3), & -\frac{1}{2} \leq x \leq \frac{1}{2}\\ \pi - \sin^{-1}(3x - 4x^3), & x > \frac{1}{2}\\ -\pi - \sin^{-1}(3x - 4x^3), & x < -\frac{1}{2}\end{cases}$
$2\cos^{-1} x = \begin{cases} \cos^{-1}(2x^2 - 1), & 0 \leq x \leq 1\\ 2\pi - \cos^{-1}(2x^2 - 1), & -1 \leq x \leq 0\end{cases}$
$3\cos^{-1} x = \begin{cases} \cos^{-1}(4x^3 - 3x), & \frac{1}{2} \leq x \leq 1\\ 2\pi - \cos^{-1}(4x^3 - 3x), & -\frac{1}{2} \leq x \leq \frac{1}{2}\\ 2\pi + \cos^{-1}(4x^3 - 3x), & -1 \leq x \leq -\frac{1}{2}\end{cases}$
$2\tan^{-1} x = \begin{cases} \sin^{-1}\left(\frac{2x}{1+x^2}\right), & -1 \leq x \leq 1\\ \pi - \sin^{-1}\left(\frac{2x}{1+x^2}\right), & x>1\\ -\pi - \sin^{-1}\left(\frac{2x}{1+x^2}\right), & x<-1\end{cases}$
$2\tan^{-1} x = \begin{cases} \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), & 0 \leq x < \infty\\ -\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), & -\infty < x \leq 0\end{cases}$
The derivatives of inverse trigonometric functions are essential for calculus problems:
$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}, x \neq \pm 1$
$\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}, x \neq \pm 1$
$\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$
$\frac{d}{dx}(\cot^{-1} x) = \frac{-1}{1+x^2}$
$\frac{d}{dx}(\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2-1}}, x \neq \pm 1$
$\frac{d}{dx}(\csc^{-1} x) = \frac{-1}{|x|\sqrt{x^2-1}}, x \neq \pm 1$
The integrals of inverse trigonometric functions are widely used in calculus:
$\int \sin^{-1} x ,dx = x\sin^{-1}x + \sqrt{1-x^2} + C$
$\int \cos^{-1} x ,dx = x\cos^{-1}x - \sqrt{1-x^2} + C$
$\int \tan^{-1} x ,dx = x\tan^{-1}x - \frac{1}{2}\ln|1+x^2| + C$
$\int \csc^{-1} x ,dx = x\csc^{-1}x + \ln|x+\sqrt{x^2-1}| + C$
$\int \sec^{-1} x ,dx = x\sec^{-1}x - \ln|x+\sqrt{x^2-1}| + C$
$\int \cot^{-1} x ,dx = x\cot^{-1}x + \frac{1}{2}\ln|1+x^2| + C$
This table summarises the domain and range of inverse trigonometric functions, which is an important topic for the inverse trigonometric functions class 12 and solving problems.
| Function | Domain | Range |
|---|---|---|
| $y = \sin^{-1}x$ | $[-1,1]$ | $[-\frac{\pi}{2}, \frac{\pi}{2}]$ |
| $y = \cos^{-1}x$ | $[-1,1]$ | $[0, \pi]$ |
| $y = \csc^{-1}x$ | $\mathbb{R} - (-1,1)$ | $[-\frac{\pi}{2}, \frac{\pi}{2}] - {0}$ |
| $y = \sec^{-1}x$ | $\mathbb{R} - (-1,1)$ | $[0, \pi] - {\frac{\pi}{2}}$ |
| $y = \tan^{-1}x$ | $\mathbb{R}$ | $(-\frac{\pi}{2}, \frac{\pi}{2})$ |
| $y = \cot^{-1}x$ | $\mathbb{R}$ | $(0, \pi)$ |
Below is a table showing the key differences between trigonometric functions and inverse trigonometric functions, covering their definitions, domains, ranges, and applications in the inverse trigonometric functions class 12.
| Aspect | Trigonometric Functions | Inverse Trigonometric Functions |
|---|---|---|
| Definition | Relates an angle to a ratio of sides | Finds the angle when the ratio is known |
| Example | $\sin(\frac{\pi}{6}) = \frac{1}{2}$ | $\sin^{-1}(\frac{1}{2}) = \frac{\pi}{6}$ |
| Functions | $\sin$, $\cos$, $\tan$, $\csc$, $\sec$, $\cot$ | $\sin^{-1}$, $\cos^{-1}$, $\tan^{-1}$, $\csc^{-1}$, $\sec^{-1}$, $\cot^{-1}$ |
| Domain | Angles (measure in radians or degrees) | Ratios (real numbers within restricted intervals) |
| Range | Ratios of sides | Angles within specific ranges |
| One-to-one nature | Not one-one over its entire domain | One-one in a restricted domain and range |
| Applications | Finding ratios from angles | Finding angles from known ratios |
Question 1:
The sum of possible values of $x$ for $\tan ^{-1}(x+1)+\cot ^{-1}\left(\frac{1}{x-1}\right)=\tan ^{-1}\left(\frac{8}{31}\right)$ is:
Solution:
$
\tan ^{-1}(x+1)+\cot ^{-1}\left(\frac{1}{x-1}\right)=\tan ^{-1} \frac{8}{31}
$
Taking tangent on both sides:
$
\begin{aligned}
& \frac{(x+1)+(x-1)}{1-\left(x^2-1\right)}=\frac{8}{31} \\
& \Rightarrow \frac{2 x}{2-x^2}=\frac{8}{31} \\
& \Rightarrow 4 x^2+31 x-8=0 \\
& \Rightarrow x=-8, \frac{1}{4}
\end{aligned}
$
But, if $x=\frac{1}{4}$
$
\tan ^{-1}(x+1) \in\left(0, \frac{\pi}{2}\right)
$
$\& \cot ^{-1}\left(\frac{1}{x-1}\right) \in\left(\frac{\pi}{2}, \pi\right)$
$\Rightarrow L H S>\frac{\pi}{2} \quad \& \quad R H S<\frac{\pi}{2}$
(Not possible)
Hence, $x=-8$
Hence, the correct answer is the $-\frac{32}{4}$.
Question 2:
Given that the inverse trigonometric function takes principal values only. Then , the number of real values of x which satisfy $\sin ^{-1}\left(\frac{3 x}{5}\right)+\sin ^{-1}\left(\frac{4 x}{5}\right)=\sin ^{-1} x$ is equal to:
Solution:
$
\begin{aligned}
& \sin ^{-1} \frac{3 x}{5}+\sin ^{-1} \frac{4 x}{5}=\sin ^{-1} x \\
& \sin ^{-1}\left(\frac{3 x}{5} \sqrt{1-\frac{16 x^2}{25}}+\frac{4 x}{5} \sqrt{1-\frac{9 x^2}{25}}\right)=\sin ^{-1} x \\
& \frac{3 x}{5} \sqrt{1-\frac{16 x^2}{25}}+\frac{4 x}{5} \sqrt{1-\frac{9 x^2}{25}}=x \\
& x=0,3 \sqrt{25-16 x^2}+4 \sqrt{25-9 x^2}=25 \\
& 4 \sqrt{25-9 x^2}=25-3 \sqrt{25-16 x^2} \text { squaring we get } \\
& 16\left(25-9 x^2\right)=625+9\left(25-16 x^2\right)-150 \sqrt{25-16 x^2} \\
& 400=625+225-150 \sqrt{25-16 x^2} \\
& 400=625+225-150 \sqrt{25-16 x^2} \\
& \sqrt{25-16 x^2}=3 \\
& \Rightarrow 25-16 x^2=9 \\
& \Rightarrow x^2=1
\end{aligned}
$
Put $x=0,1,-1$ in the original equation, we see that all values satisfy the original equation.
Number of solutions $=3$
Hence, the correct answer is 3.
Question 3:
If $\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)=4 \tan ^{-1} x$, then the number of solutions of this equation is (given $x>1$ )
Solution:
LHS $: \tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$
Let $\tan ^{-1} x=\theta \Rightarrow \tan \theta=x$
$
=\tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^2 \theta}\right)=\tan ^{-1}(\tan 2 \theta)
$
(Now
$
\begin{aligned}
& 1<x<\infty \Rightarrow \frac{\pi}{4}<\tan ^{-1} x<\frac{\pi}{2} \\
& \Rightarrow \frac{\pi}{4}<\theta<\frac{\pi}{2} \Rightarrow \frac{\pi}{2}<2 \theta<\pi
\end{aligned}
$
For this branch, $\tan ^{-1}(\tan x)=x-\pi$
$
\Rightarrow \tan ^{-1}(\tan 2 \theta)=2 \theta-\pi=2 \tan ^{-1} x-\pi
$
Now the equation is
$
\begin{aligned}
& 2 \tan ^{-1} x-\pi=4 \tan ^{-1} x \\
& \Rightarrow 2 \tan ^{-1} x=-\pi \\
& \Rightarrow \tan ^{-1} x=-\frac{\pi}{2}
\end{aligned}
$
which is not possible. So the number of solutions $=0$
Hence, the correct answer is 0.
Question 4:
The solution of $\sin^{-1}x+\sin^{-1}\left ( 2x \right )=\frac{\pi}{2}$ is:
Solution:
$
\begin{aligned}
& \sin ^{-1} x+\sin ^{-1}(2 x)=\frac{\pi}{2} \\
& \Rightarrow \sin ^{-1}(2 x)=\frac{\pi}{2}-\sin ^{-1} x
\end{aligned}
$
Taking sine on both sides
$
\begin{aligned}
& \Rightarrow \sin \left(\sin ^{-1}(2 x)\right)=\sin \left(\frac{\pi}{2}-\sin ^{-1}(x)\right) \\
& \Rightarrow 2 x=\sin \left(\cos ^{-1} x\right) \quad\left(\text { Using } \frac{\pi}{2}-\sin ^{-1} x=\cos ^{-1} x\right) \\
& \Rightarrow 2 x=\sin \left(\sin ^{-1} \sqrt{1-x^2}\right) \quad \text { (using interconversion) } \\
& \Rightarrow 2 x=\sqrt{1-x^2} \\
& \Rightarrow 4 x^2=1-x^2 \\
& \Rightarrow 3 x^2=1
\end{aligned}
$
$
\Rightarrow x=\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}
$
Check:
$
x=\frac{1}{\sqrt{3}}
$
Both $\sin ^{-1}(x)$ and $\sin ^{-1}(2 x)>0$, so they can add up to $\frac{\pi}{2}$. So $\quad x=\frac{1}{\sqrt{3}}$ is correct.
$
x=\frac{-1}{\sqrt{3}}
$
Both terms on $L H S<0 \Rightarrow L H S<0$.
So $\quad x=\frac{-1}{\sqrt{3}}$ is rejected.
Hence, the correct answer is $\frac{1}{\sqrt{3}}$.
Question 5:
The value of $\sum_{r=0}^5 \tan ^{-1}\left(\frac{1}{1+r+r^2}\right)$ is:
Solution:
$\begin{aligned} & \tan ^{-1}\left(\frac{1}{1+r+r^2}\right)=\tan ^{-1}\left(\frac{1}{1+r(r+1)}\right)=\tan ^{-1}\left(\frac{(r+1)-r}{1+r(r+1)}\right) \\ & \quad=\tan ^{-1}(r+1)-\tan ^{-1}(r) \\ & \therefore \sum_{r=0}^5 \tan ^{-1}\left(\frac{1}{1+r+r^2}\right)=\left(\tan ^{-1} 1-\tan ^{-1} 0\right)+\left(\tan ^{-1} 2-\tan ^{-1} 1\right)+ \\ & \quad \ldots \ldots \ldots . .+\left(\tan ^{-1} 5-\tan ^{-1} 4\right)+\left(\tan ^{-1} 6-\tan ^{-1} 5\right) \\ & =\tan ^{-1} 6-\tan ^{-1} 0 \\ & =\tan ^{-1} 6\end{aligned}$
Hence, the correct answer is $\tan ^{-1} 6$.
Below is a list of important topics related to the NCERT syllabus and JEE Main, helping you focus on key areas for preparation.
The chapter on Inverse Trigonometric Functions is an important part of Class 12 Mathematics and is frequently asked in board exams as well as competitive examinations. It focuses on understanding inverse relations of trigonometric functions and their properties. The table below highlights the exam-wise focus areas, commonly asked topics, and preparation strategies to help students prepare effectively.
| Exam Name | Focus Area | Common Topics Asked | Preparation Tips |
|---|---|---|---|
| CBSE Board | Conceptual clarity & application | Definition of inverse trigonometric functions, domain and range, properties | Learn NCERT definitions and practise textbook examples |
| JEE Main | Problem-solving & accuracy | Domain–range, simplification problems, basic identities | Practise MCQs and numerical-based questions regularly |
| JEE Advanced | Analytical thinking | Complex identities, inverse trigonometric equations | Solve previous years’ advanced-level questions |
| NEET | Basics & speed | Standard values, simple inverse problems | Focus on quick formula application |
| State Board Exams (ICSE, UP Board, RBSE, etc) | Theory-oriented | Definitions, properties, simple problems | Revise textbook concepts and practice solved examples |
| Mathematics Olympiads | Concept application | Advanced inverse trigonometric identities | Strengthen fundamentals and practise higher-level problems |
Below are the recommended books for studying inverse trigonometric functions, including theory, examples, and practice questions, useful for inverse trigonometric functions class 12 and competitive exams like JEE Main.
| Book Title | Author / Publisher | Description |
|---|---|---|
| NCERT Class 12 Mathematics | NCERT | Official textbook covering all concepts and examples on inverse trigonometric functions. |
| Mathematics for Class 12 | R.D. Sharma | Detailed explanations and a variety of solved problems on inverse trigonometric functions. |
| Higher Algebra | Hall & Knight | In-depth treatment of algebra, including inverse trigonometric identities and properties. |
| Objective Mathematics | R.S. Aggarwal | Exam-oriented book with MCQs and practice sets on inverse trigonometric functions. |
| Arihant Publications (JEE Main & Advanced series) | Arihant | Comprehensive coverage and practice questions for JEE and board exams. |
Below are helpful NCERT resources such as textbooks, solutions, and notes that explain inverse trigonometric functions clearly, making it easier to prepare for board exams and entrance tests.
Below are subject-wise NCERT resources offering notes, solutions, exemplar problems, and solved examples for class 12 and competitive exam preparation.
| Subject | NCERT Notes | NCERT Solutions | NCERT Exemplar |
|---|---|---|---|
| Mathematics | NCERT Notes Class 12 Maths | NCERT Solutions for Class 12 Mathematics | NCERT Exemplar Class 12 Maths |
| Physics | NCERT Notes Class 12 Physics | NCERT Solutions for Class 12 Physics | NCERT Exemplar Class 12 Physics |
| Chemistry | NCERT Notes Class 12 Chemistry | NCERT Solutions for Class 12 Chemistry | NCERT Exemplar Class 12 Chemistry |
Below are practice questions based on inverse trigonometric functions, including problems from NCERT exercises and JEE Main-level questions, to help you strengthen your understanding and problem-solving skills.
Inverse Trigonometric Functions play an important role in finding unknown angles from known trigonometric values. A clear understanding of their definitions, domain and range, formulas, and graphs makes solving problems easier and more accurate. With regular practice and proper revision, students can confidently handle inverse trigonometric function questions in board and competitive examinations.
Frequently Asked Questions (FAQs)
The six inverse trigonometric functions are $\sin^{-1}, \cos^{-1}, \tan^{-1}, \csc^{-1}, \sec^{-1}, \cot^{-1}$.
Inverse trigonometric functions are the inverse functions of the trigonometric functions.
Arctan is the inverse of $\tan$ in trigonometric functions.
The domain and range of the inverse trigonometric functions are
\begin{array}{|l|l|l|}
\hline \text { Function } & \text { Domain } & \text { Range } \\
\hline y=\sin ^{-1} x & {[-1,1]} & {[-\pi / 2, \pi / 2]} \\
\hline y=\cos ^{-1} x & {[-1,1]} & {[0, \pi]} \\
\hline y=\operatorname{cosec}^{-1} x & R-(-1,1) & {[-\pi / 2, \pi / 2]-\{0\}} \\
\hline y=\sec ^{-1} x & R-(-1,1) & {[0, \pi]-\{\pi / 2\}} \\
\hline y=\tan ^{-1} x & R & (-\pi / 2, \pi / 2) \\
\hline y=\cot ^{-1} x & R & (0, \pi) \\
\hline
\end{array}
The value of $\cos$ $\pi$ is $-1$.