Inequalities are mathematical expressions showing the relationship between two values, indicating that one value is greater than, less than, or not equal to another. Understanding inequalities is crucial for solving various mathematical problems, from basic arithmetic to advanced calculus. Quadratic inequalities are specially used for a parabola that is two-degree curves.
JEE Main: Study Materials | High Scoring Topics | Preparation Guide
JEE Main: Syllabus | Sample Papers | Mock Tests | PYQs
In this article, we will cover the concept of the sign of quadratic expression. This concept falls under the broader category of complex numbers and quadratic equations, a crucial Chapter in class 11 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination (JEE Main), and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more.
Quadratic inequalities can be derived from quadratic equations. The word "quadratic" comes from the word "quadrature", which means "square" in Latin. The general form of a quadratic equation is
The quadratic inequality is a second-degree expression in x and has a greater than (>) or lesser than (<) inequality. the quadratic inequality has been derived from the quadratic equation
If a quadratic polynomial in one variable is less than or greater than some number or any other polynomial (with a degree less than or equal to 2), then it is said to be a quadratic inequality. The difference between a quadratic equation and a quadratic inequality is that the quadratic equation is equal to some number while quadratic inequality is either less than or greater than some number. Some examples are:
The standard form of quadratic inequalities in one variable is almost the same as the standard form of a quadratic equation. The only difference is that the quadratic equation has an "equal to" sign in it while a quadratic inequality has a "greater than" or "less than" sign (> or <). The standard form of quadratic inequality can be represented as:
If
Case 1: (i) If
If
And, if
Case 2: If
If
And, if
Case 3: If
If
And, if
In general, if
The notation of greater than (>) and lesser. than (< ) is often used in quadratic equation.
The wavy curve method is used to solve the inequality of the type. Inequalities can be solved by drawing their graph and before that converting them into standard form with zero at right hand side. Then drawing the graph accordingly with area above x axis bankor below
We use the following steps in the wavy curve method to solve a question (start by getting 0 on one side of inequality)
1: Factorize the numerator and denominator into linear factors.
2: Make coefficients of
3: Equate each linear factor to zero and find the values of
4: Identify distinct critical points on the real number line. The "
5: The sign of rational function in the rightmost interval is positive. Alternate sign in adjoining intervals on the left.
6. Check for each critical point and point from even powered linear factors, if these are to be included in the answer or not.
For Example: using the wavy curve method to find the interval of
Steps
- 0 on the right-hand side (already there)
- all linear factors (already present)
- Critical points are:
The critical points are marked on the real number line. Starting with a positive sign in the rightmost interval, we denote signs of adjacent intervals by alternating signs.
Hence,
Note that 1 cannot be taken in the answer as at
(a) In an inequality, any number can be added or subtracted from both sides of the inequality.
(b) Terms can be shifted from one side to the other side of the inequality. The sign of inequality does not change.
(c) If we multiply both sides of the inequality by a non-zero positive number, then the sign of inequality does not change.
(d) In the inequality, if the sign of an expression is not known, then it cannot be cross-multiplied. Similarly, without knowing the sign of an expression, a division is not possible.
Example 1: The least value of
Solution:
Hence, the answer is 3.
Example 2: The integer ' k ', for which the inequality
Solution:
The condition for a quadratic expression to be always positive is
a (coefficient of
Now,
Coefficient of
So, we have to apply only
So, only one integer in this interval:
Hence, the answer is 3 .
Example 3: The solution of
1)
2)
3)
4)
Solution:
As the inequation is in standard form, we can make the sign scheme.
Roots:
So, the solution is (-1,9)
Example 4: Solution of
1)
2)
3)
4) None of these
Solution:
Already in standard form
Roots
Sign scheme
So,
Example 5: The solution of
1)
2)
3)
4)
Solution:
Standard form
Roots:
Roots of denominator: -1
Sign scheme
Positive for
Zero for
So, the solution is
Frequently Asked Questions(FAQ)-
1. What is inequalities?
Ans: Inequalities are the relationship between two expressions which are not equal to one another.
2. Solve
Ans:
Ans:
4. What is the solution of the expression
Ans:
5. The equation
Ans: 1
Let
Dividing by
10 Feb'25 11:53 PM
10 Feb'25 11:50 PM
10 Feb'25 11:30 PM
10 Feb'25 09:26 PM
10 Feb'25 09:23 PM
10 Feb'25 09:16 PM
10 Feb'25 08:47 PM
10 Feb'25 08:39 PM
10 Feb'25 08:31 PM
10 Feb'25 08:26 PM