Amplitude Modulation

Amplitude Modulation

Edited By Vishal kumar | Updated on Sep 25, 2024 12:40 PM IST

Amplitude Modulation (AM) is a technique used in electronic communication, most commonly for transmitting information via a radio carrier wave. In AM, the amplitude of the carrier wave is varied in proportion to that of the message signal, such as an audio signal. This allows the signal to be encoded and transmitted over long distances.

A common real-life example of amplitude modulation is AM radio broadcasting. In this system, radio stations encode sound signals onto a high-frequency carrier wave, which is then transmitted through the air. When you tune your AM radio to a specific frequency, the radio receiver demodulates the signal, extracting the audio content so you can hear the broadcast.

Amplitude Modulation

The process of changing the amplitude of a carrier wave in accordance with the amplitude of the audio frequency (AF) signal is known as amplitude modulation (AM). Carrier wave remains unchanged in AM frequency. The amplitude of a modulated wave is varied in accordance with the amplitude of the modulating wave.

Modulation Index

The ratio of change of amplitude of the carrier wave to the amplitude of the original carrier wave is called the modulation factor or degree of modulation or modulation index (m).
μa= Change in amplitude of carrier wave Amplitude of original carrier wave =EmEc where μa=EmEc=EmaxEminEmax+Emin
If a carrier wave is modulated by several sine waves the total modulated index m is given by

mt=m12+m22+m32+

Voluage Equation for AM Wave

Suppose voltage equations for carrier wave and modulating wave are

ec=Eccosωct and
em=Emsinωmt=mEcsinωmt
where,

ec= Instantaneous voltage of carrier wave,
Ec= Amplitude of the carrier wave,
ωc=2πfc= Angular velocity at the carrier frequency fc
em= The instantaneous voltage of modulating.
Em= The amplitude of the modulating wave,
ωm=2πfm= Angular velocity of modulating frequency 'f'
The voltage equation for AM wave is
e=Esinωct=(Ec+em)sinωct=(Ec+emsinωmt)sinωct
=Ecsinωct+maEc2cos(ωcωm)tmaEc2cos(ωc+ωm)t
The above AM wave indicated that the AM wave is equivalent to the summation of three sinusoidal waves, one having amplitude 'E' and the other two having amplitude moE2.

Sideband Frequencies

The AM wave contains three frequencies, fc,(fc+fm) and (fcfm).fc is called carrier frequencies, (fc+fm) and (fcfm) are called sideband frequencies.
(fc+fm): Upper sideband (USB) frequency
(fcfm): Lower sideband (LSB) frequency

In general sideband frequencies are close to the carrier frequency.

Bandwidth

The two sidebands lie on either side of the carrier frequency at equal frequency interval fm.

So, bandwidth =(fc+fm)(fcfm)=2fm

Recommended Topic Video

Solved Example Based On Amplitude Modulation

Example 1: Choose the correct statement :

1) In amplitude modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal.

2)In amplitude modulation, the frequency of the high-frequency carrier wave is made to vary in proportion to the amplitude of the audio signal

3)In frequency modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal.

4)In frequency modulation, the amplitude of the high-frequency carrier wave is made to vary in proportion to the frequency of the audio signal

Solution:

The amplitude of a modulated wave is varied in accordance with the amplitude of the modulating wave

In amplitude modulation, the amplitude of the high-frequency carrier wave is made to vary in proportion to the amplitude of the audio signal.

Hence, the correct answer is the option (1).

Example 2: A signal A cos ωt is transmitted using v0sinω0t as carrier wave. The correct amplitude-modulated (AM) signal is :

1) v0sinω0t+A2sin(ω0ω)t+A2sin(ω0+ω)t
2) v0sin[ω0(1+0.01Asinωt)t]
3) (v0+A)cosωtsinω0t
4) NoneSolution:

Amplitude modulated signal

=Ecsinωct+mEc2cos(ωcωm)tmEc2cos(ωc+ωm)tEc= amplitude of carrier wave =V0m=EmEc=AV0

therefore

The AM signal is given by

V0sinω0t+A2sin(ω0ω)t+A2sin(ω0+ω)t

Hence, the correct answer is the option (1).

Example 3: A 100 V carrier wave is made to vary between 160 V and 40 V by a modulating signal. What is the modulation index?

1) 0.6

2) 0.5

3) 0.4

4) 0.3

Solution:

ma=EmEcAc=100 VAc+Am=160 V=Amax AcAm=40=Amin

From (1) \& (2)
Ac=100 V&Am=60 m

So,
μ=AmAc=0.6

Hence, the correct answer is the option (1).

Example 4: An amplitude-modulated signal is plotted below :

Which one of the following best describes the above signal?

1) (9+sin(4π×104t))sin(5π×105t)V
2) (1+9sin(2π×104t))sin(2.5π×105t)V
3) (9+sin(2.5π×105t))sin(2π×104t)V
4) (9+sin(2π×104t))sin(2.5π×105t)V

Solution:

Voltage equation for AM wave -

ec=Eccosωctem=Emsinωmt

Resultant Modulated wave
e=(Ec+emsinωmt)sinωct

From the graph
Emin=8v and Emax=10vEC=EMAX+EMIN2
and
Ts= Time period of signal wave =100μsTc= Time period of carrier wave =8μs

So signal equation is
=[9±1sin(2πtTs)sin(2πtTc)]=[9±sin(2π×104t)sin(2.5π×105t)]

Hence, the correct answer is the option (4).

Example 5: An audio signal vm=20sin2π(1500t) amplitude modulates a carrier vc=80sin2π(100,000t). The value of per cent modulation is ___.

1) 25

2) 40

3) 15

4) 50

Solution:

The percentage change in the modulated wave and the carrier wave is given by :

% modulation =AmAc×100% modulation =2080×100% modulation =25%

Hence, the correct answer is the option (1).

Summary

Amplitude Modulation (AM) is a communication technique where the amplitude of a high-frequency carrier wave is varied in proportion to the amplitude of an audio signal. This method is widely used in AM radio broadcasting, where sound signals are encoded onto a carrier wave for transmission and later demodulated by receivers. Key concepts in AM include modulation index, sideband frequencies, and bandwidth, which determine the efficiency and clarity of the transmitted signal.

Frequently Asked Questions (FAQs)

1. What is a vector in physics?

A vector in physics is a quantity that has both magnitude and direction, represented by an arrow.

2. What is a unit vector?

A unit vector is a vector with a magnitude of one. It indicates direction only.

3. How do you multiply vectors?

Vectors can be multiplied in several ways: scalar multiplication (multiplying a vector by a scalar quantity), dot product (or scalar product, yielding a scalar), and cross product (or vector product, yielding another vector).

4. When do you use vector components?

Vector components are used to simplify vector calculations, especially in coordinate systems like Cartesian coordinates. They break down a vector into its perpendicular components along the coordinate axes (x, y, z).

Articles

Get answers from students and experts
Back to top