Careers360 Logo
Polytropic Process

Polytropic Process

Edited By Vishal kumar | Updated on Sep 10, 2024 08:29 PM IST

A polytropic process is a thermodynamic process that follows the equation PVn= constant, where P is pressure, V is volume, and n is the polytropic index. This type of process is versatile, representing various specific thermodynamic processes such as isothermal, adiabatic, and isobaric, depending on the value of n. In real life, polytropic processes can be observed in systems like air compressors, internal combustion engines, and even in the natural cooling of gases in the atmosphere. For instance, the compression of air in a car engine cylinder during the intake stroke closely resembles a polytropic process, where the heat generated during compression is partially transferred to the surroundings, leading to an intermediate behaviour between adiabatic and isothermal processes. Understanding polytropic processes is essential in designing efficient engines, refrigeration systems, and other technologies that rely on the controlled manipulation of gases.

This Story also Contains
  1. Polytropic Process
  2. Work Done by the Polytropic Process
  3. Solved Examples Based on Polytropic Process
  4. Summary

Polytropic Process

A polytropic process is a thermodynamic process that involves the relationship between pressure, volume, and temperature of a gas, described by the equation PVn= constant, where P is pressure, V is volume, and n is the polytropic index. This index determines the specific nature of the process, encompassing various well-known thermodynamic processes such as isothermal (constant temperature), adiabatic (no heat exchange), and isobaric (constant pressure).

Background wave

A process PVN=C is called a polytropic process. So, any process in this world related to thermodynamics can be explained by a polytropic process.

For example - 1. If N=1, then the process becomes isothermal.
2. If N=0, then the process becomes isobaric.
3. If N=γ, then the process become adiabatic

Work Done by the Polytropic Process

The work done by a gas during a polytropic process is an essential concept in thermodynamics. It represents the amount of energy transferred by the system as it expands or contracts.

W12=PdV

For a polytropic process,
PVN=P1V1N=P2V2N=CP=CVN

Substituting in Equation, we get,
PdV=CdVVN=CVNdv=[V1N]12=(V21NV11N)W12=P2V2P1V11N or P1V1P2V2N1(1)P1V1=nRT1P2V2=nRT2

So, equation (1) can be written as

W12=nR(T2T1)1N

And for one mole, W12=R(T2T1)1N

Specific Heat for Polytropic Process

We can write the equation of heat as Q=CΔT

Here C = Molar specific heat

From the first law of thermodynamics
Q=ΔU+W or CΔT=CvΔTRΔT(N1)C=CvR(N1)=R(γ1)R(N1)

Recommended Topic Video

Solved Examples Based on Polytropic Process

Example 1: In a process, the temperature and volume of one mole of an ideal monoatomic gas are varied according to the relation VT=K, where K is a constant. In this process, the temperature of the gas is increased by ΔT. If the amount of heat absorbed by gas is x×RΔT, then what will be the value of 'x' (R is gas constant ) :

1) 0.50

2) 0.66

3) 0.33

4) 1.33

Solution:

VT=KV[PVnR]=KPV2=nRKV2=KC=R1x+Cv ( for polytropic process ) C=R12+3R2=R2ΔQ=nCΔT=R2ΔT

Therefore 'x' will be 0.5

Hence, the answer is the option (1).

Example 2: The work done by the 1 mole of N2 gas undergoing process PV1.2 during which its temperature changes from 27C to 227C is: (work done in joules )

1) 8314

2) -8314

3) -4157

4) 4157

Solution:

W12=nR(T1T2)N1

Given N=1.2, Gas constant R=8.314 J/molK,
T1=27C and T2=227CW12=1×8.314(27227)1.21=8314 J

Hence, the answer is the option (2).

Example 3: In a certain thermodynamical process, the pressure of a gas depends on the volume kV3. The work done when the temperature changes from 100C to 300C will be __________nR, where n denotes the number of moles of a gas.

1) 50

2) 60

3) 70

4) 80

Solution:

Ti=100C&Tf=300CΔT=300100ΔT=200CP=kV3 now PV=nRTkV4=nRT now 4kVV3dV=nRdTPdV=nRdT/4 Work =PdV=nRdT4=nR4ΔT2004×nR=50nR

Hence, the answer is the option (1).

Example 4: The thermodynamic process is shown below on a PV diagram for one mole of an ideal gas. If V2=2V1 then the ratio of temperature T2T1 is :


1) 12
2) 2
3) 2
4) 12

Solution:

PV1/2=cUsingPV=nRTnRTV V1/2=cT=c1 V1/2T2 T1=(V2 V1)1/2=(2 V1 V1)1/2T2 T1=2

Hence, the answer is the option (3).

Example 5: The volume V of a given mass of monoatomic gas changes with temperature T according to the relation V=KT23. The work done when the temperature changes by 90K will be xR. The value of x is _______

[R = universal gas constant]

1) 60

2) 270

3) 90

4) 45

Solution:

W=PdVP=nRTVW=nRTVdV and V=KT2/3W=nRTKT2/3dV from (4):dV=23 K T1/3 d TW=T1T2nRTKT2/323K1T1/3dTW=23nR×(T2T1)T2T1=90 KW=23nR×90W=60nR

Assuming 1 mole of gas
n=1

So W=60R

Hence, the answer is the option (2).

Summary

A polytropic process is a versatile thermodynamic process described by PVn= constant, where n determines the nature of the process, including isothermal, adiabatic, and isobaric. The work done during this process can be calculated using specific formulas depending on n, and it is crucial for understanding energy transfer in systems like engines and compressors. The concept also extends to calculating specific heat and solving practical problems involving changes in temperature, pressure, and volume in gases.

Articles

Back to top