Sequences and series are fundamental concepts in mathematics with applications ranging from basic arithmetic to advanced calculus. A sequence is an ordered list of numbers, while a series is the sum of the terms of a sequence. In this article, we will explore various types of miscellaneous sequences and series, including natural numbers, squares and cubes of natural numbers, arithmetic-geometric progressions (AGP), and techniques for inserting arithmetic and geometric progressions between two numbers. For better understanding, we will also discuss some solved examples.
CAT 2024: 20 Free Mock Test | 10 Year PYQs | 60 Day Study Material | Most Scoring Concepts
XAT 2025: Section-wise Preparation Tips | Sample Paper
Don't Miss: SNAP 2024 Sample Papers | NMAT 2024 Sample Papers | MAT 2024 Sample Papers
A sequence of natural numbers is simply an ordered list of the first $n$ natural numbers i.e. 1, 2, 3, 4, ……, $n$.
The sum of the first $n$ natural number is given by the formula
$S_n = \frac{n(n+1)}{2}$
For example, the sum of the first 10 natural numbers is $\frac{10(10+1)}{2}$ = 55.
A sequence of squares of n natural numbers consists of numbers that are the squares of the first $n$ natural numbers, i.e. $1^2, 2^2, 3^2, 4^2, ……., n^2$.
The sum of the squares of the first $n$ natural numbers is given by the formula,
$S_n = \frac{n(n+1)(2n+1)}{6}$
For example, the sum of the squares of the first 5 natural numbers is
$\frac{5(5+1)(2×5 +1)}{6}$ = 55
A sequence of cubes of the first n natural numbers consists of numbers that are the cubes of the first $n$ natural numbers, i.e. $1^3, 2^3, 3^3, 4^3, ……., n^3$.
The sum of the cubes of the first $n$ natural numbers is given by the formula,
$S_n = [\frac{n(n+1)}{2}]^2$
For example, the sum of the cubes of the first 5 natural numbers is
$[\frac{5(5+1)}{2}]^2$ = 225
An arithmetic-geometric progression (AGP) is a sequence where each term is the product of the terms of an arithmetic progression (AP) and a geometric progression (GP).
The general form of an AGP is $a, (a+d)r, (a+2d)r^2, (a+3d)r^3, …….$
where $a$ is the initial term, $d$ is the common difference, and $r$ is the common ratio.
The nth term of an AGP is obtained by multiplying the corresponding term of the arithmetic progression (AP) and the geometric progression (GP).
So, the nth term is given by the formula $t_n = [a+(n-1)d]r^{n-1}$.
The sum of the first $n$ terms of an AGP is given by the formula
$S_n = \displaystyle\sum_{k=1}^{n} [a+(k-1)d]r^{k-1}$, which can be further simplified as
$S_n = \frac{a - [a+(n-1)d]r^n}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2}$
The sum to infinity is given by $S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$.
Let the two numbers be $a$ and $b$. We will need to insert $n$ terms of AP between them.
Let the $n$ terms be $a_1, a_2, a_3, ……., a_n$.
So, the sequence will be $a, a_1, a_2, a_3, ……., a_n, b$ with a total of $(n + 2)$ terms and let the common difference be $d$.
Where $(n + 2)^{th}$ term is $b$ i.e. $a + (n + 2 - 1)d = b$
⇒ $d = \frac{b-a}{n+1}$
Now, the terms of the sequence become,
$a_1 = a + d$
$a_2 = a + 2d$
$a_3 = a + 3d$
.
.
.
$a_n = a + nd$
For example, let’s insert 5 terms of AP between 3 and 21.
⇒ Here $a$ = 3, $b$ = 21 and $n$ = 5
So, the common difference ($d$) = $\frac{b-a}{n+1}$ = $\frac{21-3}{5+1}$ = 3
Now, the terms are (3+3), (3+2×3), (3+3×3), (3+4×3), (3+5×3) i.e. 6, 9, 12, 15, 18.
So, the final sequence is 3, 6, 9, 12, 15, 18, and 21.
Let the two numbers be $x$ and $y$. We will need to insert $n$ terms of GP between them.
Let the $n$ terms be $a_1, a_2, a_3, ……., a_n$.
So, the sequence will be $x, a_1, a_2, a_3, ……., a_n, y$ with a total of $(n + 2)$ terms and let the common ratio be $r$.
Where $(n + 2)^{th}$ term is $y$ i.e. $xr^{n+2-1} = y$
⇒ $r = (\frac{y}{x})^{\frac{1}{n+1}}$
Now, the terms of the sequence become,
$a_1 = ar$
$a_2 = ar^2$
$a_3 = ar^3$
.
.
.
$a_n = ar^n$
For example, let’s insert 4 terms of GP between 5 and 160.
⇒ Here x = 5, y = 160 and n = 4
Thus, the common ratio (r) = $(\frac{y}{x})^{\frac{1}{n+1}}$ = $(\frac{160}{5})^{\frac{1}{4+1}}$
So, $r = 32^{\frac{1}{5}} = 2$
Now, the terms are $(5×2), (5×2^2), (5×2^3), (5×2^4)$ i.e. 10, 20, 40, 80.
So, the final sequence is 5, 10, 20, 40, 80, and 160.
If the general term $t_n$ of a sequence is given, then the sequence can be deduced by substituting consecutive integer values of $n$.
For example, if the general term of a sequence is $t_n=2n+1$,
Then $t_1=2(1)+1=3$
$t_1=2(1)+1=3$
$t_1=2(2)+1=5$
$t_1=2(3)+1=7$
$t_1=2(4)+1=9$
.
.
.
So, the sequence is 3, 5, 7, 9, …….
Q.1.
Show that the sum of $(m + n)^{th}$ and $(m – n)^{th}$ terms of an AP is equal to twice the $m$th term.
Solution:
Let the first term and the common difference of the AP be $a$ and $d$.
Now, the $(m+n)^{th}$ term is $t_{m+n} = a+(m+n-1)d$
And the $(m-n)^{th}$ term is $t_{m-n} = a+(m-n-1)d$
So, the sum of these two terms = $t_{m+n}+t_{m-n}=a+(m+n-1)d+a+(m-n-1)d=2[a+(m-1)d]$
Which is twice the $m^{th}$ term.
Hence, the sum of $(m + n)^{th}$ and $(m – n)^{th}$ terms of an AP is equal to twice the $m^{th}$ term.
Q.2.
The sum of the first 20 term of the series $\frac{1}{5×6}+\frac{1}{6×7}+\frac{1}{7×8}+....$ is:
0.16
1.6
16
0.016
Hint: Break the all fractions term as $\frac{1}{5 \times 6}=\frac{1}{5}-\frac{1}{6}$ and add all terms.
Solution:
Given: The sum of the first 20 terms of the series $\frac{1}{5×6}+\frac{1}{6×7}+\frac{1}{7×8}+....$
So, $a_{1} =5$ and $a_{20} =5+(20-1)×1=24$
20th term $=\frac{1}{24×25}$
$=\frac{1}{5×6}+\frac{1}{6×7}+\frac{1}{7×8}+.... + \frac{1}{24×25}$
$=\frac{1}{5}-\frac{1}{6} + \frac {1}{6} - \frac{1}{7}+\frac{1}{7}-\frac{1}{8}+..............+\frac{1}{24}-\frac{1}{25}$
$=\frac{1}{5}-\frac{1}{25}$
$=\frac{4}{25}$
$= 0.16$
Hence, the correct answer is option (1).
Q.3.
What is the value of S $=\frac{1}{1×3×5}+\frac{1}{1×4}+\frac{1}{3×5×7}+\frac{1}{4×7}+\frac{1}{5×7×9}+\frac{1}{7×10}+....$ Up to 20 terms.
$\frac{6179}{15275}$
$\frac{6070}{14973}$
$\frac{7191}{15174}$
$\frac{5183}{16423}$
Hint: Arrange the same type of terms on one side and other types on one side, then take $\frac{1}{4}$ common from the first type and $\frac{1}{3}$ common from 2nd type.
Solution:
Given:
$S=\frac{1}{1×3×5}+\frac{1}{1×4}+\frac{1}{3×5×7}+\frac{1}{4×7}+\frac{1}{5×7×9}+\frac{1}{7×10}+....$ Up to 20 terms.
Rewriting it like,
$\frac{1}{1×3×5}+\frac{1}{3×5×7}+\frac{1}{5×7×9}+...+\frac{1}{1×4}+\frac{1}{4×7}+\frac{1}{7×10}+...$Up to 20 terms.
$=\frac{1}{4}[\frac{1}{1×3}-\frac{1}{3×5}+\frac{1}{3×5}-\frac{1}{5×7}+\frac{1}{5×7}-\frac{1}{7×9}+...–\frac{1}{21×23}]+\frac{1}{3}[1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...-\frac{1}{31}]$
It will cancel out most of the terms except the first and last term.
$=\frac{1}{4}[\frac{1}{1×3}-\frac{1}{21×23}]+\frac{1}{3}[1-\frac{1}{31}]$
$=\frac{40}{483}+\frac{10}{31}$
$=\frac{6070}{14973}$
Hence, the correct answer is option (2).
Q.4.
What is the value of $14^{3}+16^{3}+18^{3}+...+30^{3}$?
134576
120212
115624
111672
Hint: Use this formula for the sum of the cubes of $n$ natural numbers:
$(1^{3}+2^{3}+3^{3}+.....+n^{3})=\left[\frac{n(n+1)}{2}\right]^2$
Solution:
Given:
$14^{3}+16^{3}+18^{3}+.....+30^{3}$
$= 2^{3}\times7^{3}+2^{3}\times8^{3}+2^{3}\times9^{3}+.....+2^{3}\times15^{3}$
$= 2^{3}(7^{3}+8^{3}+9^{3}+.....+15^{3})$
$= 2^{3}[(1^{3}+2^{3}+3^{3}+4^{3}+....+15^{3})-(1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3})]$
The sum of cubes of $n$ natural numbers$ =\left[\frac{n(n+1)}{2}\right]^2$
For $n = 6$, we have
$1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}=\left[\frac{6(6+1)}{2}\right]^2 = \left[\frac{42}{2}\right]^2 = (21)^{2} =$ 441
For $n = 15$, we have
$1^{3}+2^{3}+3^{3}+4^{3}+....+15^{3}=\left[\frac{15(15+1)}{2}\right]^2 = \left[\frac{240}{2}\right]^2 = (120)^{2} =$ 14400
Now, $2^{3}[(1^{3}+2^{3}+3^{3}+4^{3}+....+15^{3})-(1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3})]$
$=2^{3}(14400 - 441)$
$= 8 × 13959$
$= 111672$
Hence, the correct answer is option (4).
Q.5.
If Un = $\frac{1}{n}-\frac{1}{n+1}$, then the value of U1 + U2 + U3 + U4 + U5 is:
$\frac{1}{4}$
$\frac{5}{6}$
$\frac{1}{6}$
$\frac{1}{3}$
Hint: You have to put values of n, that is 1, 2, 3, 4, 5 in the first equation to solve it.
Solution:
Un = $\frac{1}{n}-\frac{1}{n+1}$
So, U1 = $\frac{1}{1}-\frac{1}{1+1}=1-\frac{1}{2}$
Similarly, U2 = $\frac{1}{2}-\frac{1}{3}$
U3 = $\frac{1}{3}-\frac{1}{4}$
U4 = $\frac{1}{4}-\frac{1}{5}$
U5 = $\frac{1}{5}-\frac{1}{6}$
Adding all this we get,
U1 + U2 + U3 + U4 + U5 = $1-\frac{1}{6}=\frac{5}{6}$
Hence, the correct answer is option (2).
Q.6.
If $\small 1^{2}+2^{2}+3^{2}+......+\ p^{2}=\frac{p(p+1)(2p+1)}{6}$, then $\small 1^{2}+3^{2}+5^{2}+......+17^{2}$ is equal to:
1785
1700
980
969
Hint: Use the given formula and simplify.
$1^2+2^2+3^2+......+n^2=\frac{n(n+1)(2n+1)}{6}$
Solution:
Given: $1^{2}+2^{2}+3^{2}+......+p^{2}=\frac{p(p+1)(2p+1)}{6}$
So, $1^{2}+2^{2}+3^{2}+......+17^{2}=\frac{17(17+1)(2\times 17+1)}{6}$-----------------(1)
Also, $2^{2}+4^{2}+6^{2}+......+16^{2}=2^{2}(1^{2}+2^{2}+3^{2}+......+8^{2})$
$⇒2^{2}+4^{2}+6^{2}+......+16^{2}=2^{2}(\frac{8(8+1)(2\times 8+1)}{6})$----------------(2)
Subtracting equation (2) from equation (1), we get,
$1^{2}+3^{2}+5^{2}+......+17^{2}=\frac{17(17+1)(2\times 17+1)}{6}-2^{2}(\frac{8(8+1)(2\times 8+1)}{6})$
$\therefore1^{2}+3^{2}+5^{2}+......+17^{2}= 969$
Hence, the correct answer is option (4).
Q.7.
$\small \left ( 5^{2}+6^{2}+7^{2}+.....+10^{2} \right )$ is equal to:
330
345
355
360
Hint: Use formula: $1^{2}+2^{2}+3^{2}+.....+n^{2}=\frac{n(n+1)(2n+1)}{6}$ and solve.
Solution:
We know that $1^{2}+2^{2}+3^{2}+.....+n^{2}=\frac{n(n+1)(2n+1)}{6}$
So, $1^{2}+2^{2}+3^{2}+.....+10^{2}=\frac{10(10+1)(2\times 10+1)}{6}$-----------------(1)
Also, $1^{2}+2^{2}+.....+4^{2}=\frac{4(4+1)(2\times 4+1)}{6}$------------------------------(2)
Subtracting equation (2) from (1), we get,
$5^{2}+6^{2}+.....+10^{2}=\frac{10(10+1)(2\times 10+1)}{6}-\frac{4(4+1)(2\times 4+1)}{6}$
$\therefore5^{2}+6^{2}+.....+10^{2}=355$
Hence, the correct answer is option (3).
Q.8.
Which of the following statements is true?
I. $\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\ldots \ldots \frac{1}{110}<\frac{5}{6}$
II. $\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\ldots \ldots \frac{1}{143}>\frac{7}{13}$
Only I
Both I and II
Only II
Neither I nor II
Hint: Solve the problem by expanding the LHS terms.
Solution:
Statement I:
$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\ldots \ldots \frac{1}{110}<\frac{5}{6}$
Expand LHS
$⇒\frac{1}{2}+\frac{1}{2\times{3}}+\frac{1}{3\times{4}}+\ldots \ldots \frac{1}{10\times{11}}<\frac{5}{6}$
$⇒\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\ldots \ldots \frac{1}{10}-\frac{1}{11}<\frac{5}{6}$
$⇒1-\frac{1}{11}<\frac{5}{6}$
$⇒\frac{10}{11}<\frac{5}{6}$
which is wrong,
So, statement I is incorrect.
Statement II:
$\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\ldots \ldots \frac{1}{143}>\frac{7}{13}$
$⇒\frac{1}{3}+\frac{1}{3\times5}+\frac{1}{5\times7}+\ldots \ldots \frac{1}{11\times13}>\frac{7}{13}$
$⇒\frac{1}{3}+\frac{2}{2}[\frac{1}{3\times5}+\frac{1}{5\times7}+\ldots \ldots \frac{1}{11\times13}]>\frac{7}{13}$
$⇒\frac{1}{3}+\frac{1}{2}[\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\ldots \ldots \frac{1}{11}-\frac{1}{13}]>\frac{7}{13}$
$⇒\frac{1}{3}+\frac{1}{2}[\frac{1}{3}-\frac{1}{13}]>\frac{7}{13}$
$⇒\frac{1}{3}+\frac{5}{39}>\frac{7}{13}$
$⇒\frac{6}{13}>\frac{7}{13}$
which is wrong
So, statement II is incorrect.
$\therefore$ Both the statement is incorrect.
Hence, the correct answer is option (4).
Q.9.
What is the sum of the first 20 terms of the following series?
$1 \times 2+2 \times 3+3 \times 4+4 \times 5+\ldots \ldots$
3160
2940
3240
3080
Hint: Find the sum of the first 20 terms of the following series using formulas,
The sum of the first $n$ consecutive number = $\frac{n(n+1)}{2}$
The sum of the square of the first $n$ consecutive number = $\frac{n(n + 1) (2n + 1)}{6}$.
Solution:
Given: The series is $1 \times 2+2 \times 3+3 \times 4+4 \times 5+\ldots \ldots$.
The sum of the first $n$ consecutive number = $\frac{n(n+1)}{2}$
The sum of the square of the first $n$ consecutive number = $\frac{n(n + 1) (2n + 1)}{6}$
The sum of the first 20 terms of the following series is given as,
$n$ the term = $n(n+1)$
Sum = $\sum n(n+1)=\sum (n^2+n)=\sum n^2+\sum n$
Sum = $\frac{n(n + 1) (2n + 1)}{6}+\frac{n(n+1)}{2}$
⇒ Sum = $\frac{n(n+1)}{2}[\frac{2n+1}{3}+1]$
⇒ Sum = $\frac{n(n+1)}{2}[\frac{2n+1+3}{3}]$
⇒ Sum = $\frac{n(n+1)(2n+4)}{6}$ (equation 1)
Substitute $n=20$ in the equation (1),
Sum = $\frac{20(20+1)(2\times20+4)}{6}$
⇒ Sum = $\frac{20\times 21\times44}{6}$ = $3080$
Hence, the correct answer is option (4).
Q.10.
What is the value of $\frac{7}{2}+\frac{11}{3}+\frac{7}{6}+\frac{11}{15}+\frac{7}{12}+\frac{11}{35}+\ldots \ldots+\frac{7}{156}+\frac{11}{575}$?
$\frac{3917}{355}$
$\frac{3816}{325}$
$\frac{3714}{345}$
$\frac{3216}{315}$
Hint: The total sum of the series = The sum of the first series + The sum of the second series
Determine the value of the series by solving two distinct series independently.
Solution:
Given: The series is $\frac{7}{2}+\frac{11}{3}+\frac{7}{6}+\frac{11}{15}+\frac{7}{12}+\frac{11}{35}+\ldots \ldots+\frac{7}{156}+\frac{11}{575}$.
Determine the value of the series by solving two distinct series independently.
The sum of the first series = $\frac{7}{2}+\frac{7}{6}+\frac{7}{12}+...+\frac{7}{156}$
⇒ Sum = $7[1–(\frac{1}{2})+(\frac{1}{2}–\frac{1}{3})+(\frac{1}{3}–\frac{1}{4})+...+(\frac{1}{12}–\frac{1}{13})]$
⇒ Sum = $7[1–\frac{1}{13}]$
⇒ Sum = $7\times\frac{12}{13}=\frac{84}{13}$
The sum of the second series = $\frac{11}{3}+\frac{11}{15}+\frac{11}{35}+...+\frac{11}{575}$
⇒ Sum = $11[\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{575}]$
⇒ Sum = $\frac{11}{2}[\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{575}]$
⇒ Sum = $\frac{11}{2}[1–(\frac{1}{3})+(\frac{1}{3}–\frac{1}{5})+(\frac{1}{5}–\frac{1}{7})+...+(\frac{1}{23}–\frac{1}{25})]$
⇒ Sum = $\frac{11}{2}[1–\frac{1}{25}]$
⇒ Sum = $\frac{11}{2}\times\frac{24}{25}=\frac{132}{25}$
The total sum of the series = The sum of the first series + The sum of the second series
The total sum of the series $=\frac{84}{13}+\frac{132}{25}$
$=\frac{84\times 25+132\times 13}{25\times 13}=\frac{2100+1716}{325}=\frac{3816}{325}$
Hence, the correct answer is option (2).
Sequences and series are fundamental concepts in mathematics with applications ranging from basic arithmetic to advanced calculus. A sequence is an ordered list of numbers, while a series is the sum of the terms of a sequence.
Foe example, if $a_1, a_2, a_3, ……., a_n$ is a sequence, then $a_1 + a_2 + a_3 + ……. + a_n$ is a series.
In sequence and series, $n$ is the number of terms or position of a term.
The common difference $d$ in an arithmetic sequence is found by subtracting any term from the subsequent term.
The formula for the sum of an arithmetic series is $S_n = \frac{n}{2}[2a+(n-1)d]$, where $a$ is the first term, $d$ is the common difference, $n$ is the number of terms and $S_n$ is the sum of the terms.
An arithmetic-geometric progression (AGP) is a sequence where each term is the product of the terms of an arithmetic progression (AP) and a geometric progression (GP).
The general form of an AGP is $a, (a+d)r, (a+2d)r^2, (a+3d)r^3, …….$