Question : If $x+\frac{1}{x}=-14$, and $x<-1$, what will be the value of $x^2-\frac{1}{x^2}$?
Option 1: $-112 \sqrt{3}$
Option 2: $112 \sqrt{3}$
Option 3: $-140 \sqrt{2}$
Option 4: $140 \sqrt{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $112 \sqrt{3}$
Solution : Given, $x+\frac{1}{x}=-14$ Squaring both sides, we get, ⇒ $x^2+\frac{1}{x^2}+2=196$ ⇒ $x^2+\frac{1}{x^2}=196-2=194$ Subtracting 2 from both sides, we get, $x^2+\frac{1}{x^2}-2=194-2$ ⇒ $(x-\frac{1}{x})^2=192$ ⇒ $x-\frac{1}{x}=-\sqrt{192}$ [as $x<-1$] Now $x^2-\frac{1}{x^2}$ $=(x-\frac{1}{x})(x+\frac{1}{x})$ $=(-\sqrt{192})\times (-14)$ $=8\sqrt3\times 14 = 112\sqrt3$ Hence, the correct answer is $112\sqrt3$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\left(x^2+\frac{1}{x^2}\right)=7$, and $0<x<1$, find the value of $x^2-\frac{1}{x^2}$.
Question : If $\left(x^2+\frac{1}{x^2}\right)=6$ and $0<x<1$, what is the value of $x^4-\frac{1}{x^4}$?
Question : If $x^2-7 x+1=0$ and $0<x<1$, what is the value of $x^2-\frac{1}{x^2}?$
Question : If $\left(x+\frac{1}{x}\right)=\sqrt{6}$ and $x>1$, what is the value of $\left(x^8-\frac{1}{x^8}\right)$?
Question : If $\left(x+\frac{1}{x}\right)=2 \sqrt{2}$ and $x>1$, what is the value of $\left(x^6-\frac{1}{x^6}\right)$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile