Question : If $\operatorname{cos} \theta=\frac{4}{5}$, find the value of $\operatorname{cot} \theta+\tan \theta$.
Option 1: $\frac{12}{25}$
Option 2: $\frac{25}{12}$
Option 3: $\frac{27}{12}$
Option 4: $\frac{12}{27}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{25}{12}$
Solution : Given: $\operatorname{cos} \theta=\frac{4}{5}$ We know that, $\operatorname{sin} \theta=\sqrt{1-\operatorname{cos}^2 \theta}$ $⇒\operatorname{sin} \theta=\sqrt{1-(\frac{4}{5})^2}$ $⇒\operatorname{sin} \theta=\sqrt{1-\frac{16}{25}}$ $⇒\operatorname{sin} \theta=\sqrt{\frac{9}{25}}=\frac{3}{5}$ Now, $\operatorname{cot} \theta+\tan \theta$ $= \frac{\operatorname{cos} \theta}{\operatorname{sin} \theta}+\frac{\operatorname{sin} \theta}{\operatorname{cos} \theta}$ Putting the values, we get: $=\frac{\frac{4}{5}}{\frac{3}{5}}+\frac{\frac{3}{5}}{\frac{4}{5}}$ $=\frac{4}{3}+\frac{3}{4}$ $=\frac{16+9}{12}$ $=\frac{25}{12}$ Hence, the correct answer is $\frac{25}{12}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $6 \sec \theta=10$, then find the value of $\frac{5 \operatorname{cosec} \theta-3 \cot \theta}{4 \cos \theta+3 \sin \theta}$.
Question : If $\sin \theta+\cos \theta=\frac{1}{29}$, then find the value of $\frac{\operatorname{sin} \theta+\operatorname{cos} \theta}{\operatorname{sin} \theta-\operatorname{cos} \theta}$.
Question : If $\operatorname{tan} \theta=\frac{3}{4}$, then find the value of expression $\frac{1+\operatorname{sin} \theta}{1-\operatorname{sin} \theta}$.
Question : Find the numerical value of $\frac{9}{\operatorname{cosec^{2}\theta}}+4\cos^{2}\theta+\frac{5}{1+\tan^{2}\theta}$
Question : If $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{4}{5}$, then the value of $\frac{\operatorname{cosec}^2 \theta}{2-\operatorname{cosec}^2 \theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile