Careers360 Logo
Interested in this College?
Get updates on Eligibility, Admission, Placements Fees Structure
Compare

Quick Facts

Medium Of InstructionsMode Of LearningMode Of DeliveryFrequency Of Classes
EnglishSelf Study, Virtual ClassroomVideo and Text BasedWeekends

Courses and Certificate Fees

Certificate AvailabilityCertificate Providing Authority
yesBelhaven University, Mississippi

The fees for course Advanced Certification Program in Big Data is -

HeadAmount
Total Admission Fee
₹ 75,012 (Inclusive of All)
EMI Starts at
₹ 8,000



The Syllabus

  • Module 01 – Hadoop Installation and Setup
  • Module 02 – Introduction to Big Data Hadoop and Understanding HDFS and MapReduce
  • Module 03 – Deep Dive in MapReduce
  • Module 04 – Introduction to Hive
  • Module 05 – Advanced Hive and Impala
  • Module 06 – Introduction to Pig
  • Module 07 – Flume, Sqoop and HBase
  • Module 08 – Writing Spark Applications Using Scala
  • Module 09 – Use Case Bobsrockets Package
  • Module 10 – Introduction to Spark
  • Module 11 – Spark Basics
  • Module 12 – Working with RDDs in Spark
  • Module 13 – Aggregating Data with Pair RDDs
  • Module 14 – Writing and Deploying Spark Applications
  • Module 15 – Project Solution Discussion and Cloudera Certification Tips and Tricks
  • Module 16 – Parallel Processing
  • Module 17 – Spark RDD Persistence
  • Module 18 – Spark MLlib
  • Module 19 – Integrating Apache Flume and Apache Kafka
  • Module 20 – Spark Streaming
  • Module 21 – Improving Spark Performance
  • Module 22 – Spark SQL and Data Frames
  • Module 23 – Scheduling/Partitioning
Following topics will be available only in self-paced mode:
  • Module 24 – ETL Connectivity with Hadoop Ecosystem (Self-Paced)
  • Module 25 – Hadoop Application Testing
  • Module 26 – Roles and Responsibilities of Hadoop Testing Professional
  • Module 27 – Framework Called MRUnit for Testing of MapReduce Programs
  • Module 28 – Unit Testing
  • Module 29 – Test Execution
  • Module 30 – Test Plan Strategy and Writing Test Cases for Testing Hadoop Application

Scala Course Content
  • Module 01 – Introduction to Scala
  • Module 02 – Pattern Matching
  • Module 03 – Executing the Scala Code
  • Module 04 – Classes Concept in Scala
  • Module 05 – Case Classes and Pattern Matching
  • Module 06 – Concepts of Traits with Example
  • Module 07 – Scala–Java Interoperability
  • Module 08 – Scala Collections
  • Module 09 – Mutable Collections Vs. Immutable Collections
  • Module 10 – Use Case Bobsrockets Package
Spark Course Content
  • Module 11 – Introduction to Spark
  • Module 12 – Spark Basics
  • Module 13 – Working with RDDs in Spark
  • Module 14 – Aggregating Data with Pair RDDs
  • Module 15 – Writing and Deploying Spark Applications
  • Module 16 – Parallel Processing
  • Module 17 – Spark RDD Persistence
  • Module 18 – Spark MLlib
  • Module 19 – Integrating Apache Flume and Apache Kafka
  • Module 20 – Spark Streaming
  • Module 21 – Improving Spark Performance
  • Module 22 – Spark SQL and Data Frames
  • Module 23 – Scheduling/Partitioning

  • Module 1 – Splunk Development Concepts
  • Module 2 – Basic Searching
  • Module 3 – Using Fields in Searches
  • Module 4 – Saving and Scheduling Searches
  • Module 5 – Creating Alerts
  • Module 6 – Scheduled Reports
  • Module 7 – Tags and Event Types
  • Module 8 – Creating and Using Macros
  • Module 9 – Workflow
  • Module 10 – Splunk Search Commands
  • Module 11 – Transforming Commands
  • Module 12 – Reporting Commands
  • Module 13 – Mapping and Single Value Commands
  • Module 14 – Splunk Reports and Visualizations
  • Module 15 – Analyzing, Calculating and Formatting Results
  • Module 16 – Correlating Events
  • Module 17 – Enriching Data with Lookups
  • Module 18 – Creating Reports and Dashboards
  • Module 19 – Getting Started with Parsing
  • Module 20 – Using Pivot
  • Module 21 – Common Information Model (CIM) Add-On
Splunk Administration Topics
  • Module 22 – Overview of Splunk
  • Module 23 – Splunk Installation
  • Module 24 – Splunk Installation in Linux
  • Module 25 – Distributed Management Console
  • Module 26 – Introduction to Splunk App
  • Module 27 – Splunk Indexes and Users
  • Module 28 – Splunk Configuration Files
  • Module 29 – Splunk Deployment Management
  • Module 30 – Splunk Indexes
  • Module 31 – User Roles and Authentication
  • Module 32 – Splunk Administration Environment
  • Module 33 – Basic Production Environment
  • Module 34 – Splunk Search Engine
  • Module 35 – Various Splunk Input Methods
  • Module 36 – Splunk User and Index Management
  • Module 37 – Machine Data Parsing
  • Module 38 – Search Scaling and Monitoring
  • Module 39 – Splunk Cluster Implementation

  • Module 01 – Introduction to Data Science using Python
  • Module 02 – Python basic constructs
  • Module 03 – Maths for DS-Statistics & Probability
  • Module 04 – OOPs in Python (Self paced)
  • Module 05 – NumPy for mathematical computing
  • Module 06 – SciPy for scientific computing
  • Module 07 – Data manipulation
  • Module 08 – Data visualization with Matplotlib
  • Module 09 – Machine Learning using Python
  • Module 10 – Supervised learning
  • Module 11 – Unsupervised Learning
  • Module 12 – Python integration with Spark (Self paced)
  • Module 13 – Dimensionality Reduction
  • Module 14 – Time Series Forecasting

  • Module 01 – Introduction to the Basics of Python
  • Module 02 – Sequence and File Operations
  • Module 03 – Functions, Sorting, Errors and Exception, Regular Expressions, and Packages
  • Module 04 – Python: An OOP Implementation
  • Module 05 – Debugging and Databases
  • Module 06 – Introduction to Big Data and Apache Spark
  • Module 07 – Python for Spark
  • Module 08 – Python for Spark: Functional and Object-Oriented Model
  • Module 09 – Apache Spark Framework and RDDs
  • Module 10 – PySpark SQL and Data Frames
  • Module 11 – Apache Kafka and Flume
  • Module 12 – PySpark Streaming
  • Module 13 – Introduction to PySpark Machine Learning

  • Module 01 – Introduction to NoSQL and MongoDB
  • Module 02 – MongoDB Installation
  • Module 03 – Importance of NoSQL
  • Module 04 – CRUD Operations
  • Module 05 – Data Modeling and Schema Design
  • Module 06 – Data Management and Administration
  • Module 07 – Data Indexing and Aggregation
  • Module 08 – MongoDB Security
  • Module 09 – Working with Unstructured Data

  • Module 01 – Introduction to Big Data and Data Collection
  • Module 02 – Introduction to Cloud Computing & AWS
  • Module 03 – Elastic Compute and Storage Volumes
  • Module 04 – Virtual Private Cloud
  • Module 05 – Storage – Simple Storage Service (S3)
  • Module 06 – Databases and In-Memory DataStores
  • Module 07 – Data Storage
  • Module 08 – Data Processing
  • Module 09 – Data Analysis
  • Module 09 – Data Visualization and Data Security

  • Module 01 – Introduction to Hadoop and Its Ecosystem, MapReduce and HDFS
  • Module 02 – MapReduce
  • Module 03 – Introduction to Pig and Its Features
  • Module 04 – Introduction to Hive
  • Module 05 – Hadoop Stack Integration Testing
  • Module 06 – Roles and Responsibilities of Hadoop Testing
  • Module 07 – Framework Called MRUnit for Testing of MapReduce Programs
  • Module 08 – Unit Testing
  • Module 09 – Test Execution of Hadoop: Customized
  • Module 10 – Test Plan Strategy Test Cases of Hadoop Testing

  • Module 01 – Understanding the Architecture of Storm
  • Module 02 – Installation of Apache Storm
  • Module 03 – Introduction to Apache Storm
  • Module 04 – Apache Kafka Installation
  • Module 05 – Apache Storm Advanced
  • Module 06 – Storm Topology
  • Module 07 – Overview of Trident
  • Module 08 – Storm Components and Classes
  • Module 09 – Cassandra Introduction
  • Module 10 – Boot Stripping

  • Module 01 – What is Kafka – An Introduction
  • Module 02 – Multi Broker Kafka Implementation
  • Module 03 – Multi Node Cluster Setup
  • Module 04 – Integrate Flume with Kafka
  • Module 05 – Kafka API
  • Module 06 – Producers & Consumers

  • Module 01 – Advantages and Usage of Cassandra
  • Module 02 – CAP Theorem and No SQL DataBase
  • Module 03 – Cassandra fundamentals, Data model, Installation and setup
  • Module 04 – Cassandra Configuration
  • Module 05 – Summarization, node tool commands, cluster, Indexes, Cassandra & MapReduce, Installing Ops-center
  • Module 06 – Multi Cluster setup
  • Module 07 – Thrift/Avro/Json/Hector Client
  • Module 08 – Datastax installation part,· Secondary index
  • Module 09 – Advance Modelling
  • Module 10 – Deploying the IDE for Cassandra applications
  • Module 11 – Cassandra Administration
  • Module 12 – Cassandra API and Summarization and Thrift

  • Module 01 – Core Java Concepts
  • Module 02 – Writing Java Programs using Java Principles
  • Module 03 – Language Conceptuals
  • Module 04 – Operating with Java Statements
  • Module 05 – Concept of Objects and Classes
  • Module 06 – Introduction to Core Classes
  • Module 07 – Inheritance in Java
  • Module 08 – Exception Handling in Detail
  • Module 09 – Getting started with Interfaces and Abstract Classes
  • Module 10 – Overview of Nested Classes
  • Module 11 – Getting started with Java Threads
  • Module 12 – Overview of Java Collections
  • Module 13 – Understanding JDBC
  • Module 14 – Java Generics
  • Module 15 – Input/Output in Java
  • Module 16 – Getting started with Java Annotations
  • Module 17 – Reflection and its Usage

  • Introduction to Linux  – Establishing the fundamental knowledge of how Linux works and how you can begin with Linux OS.
  • Linux Basics – File Handling, data extraction, etc.
  • Hands-on Sessions And Assignments for Practice – Strategically curated problem statements for you to start with Linux.
Back to top