Advanced Certification Program in Big Data
Expert
Online
7 Months
75,012 INR
Interested in this College?
Get updates on Eligibility, Admission, Placements Fees Structure
Compare Quick Facts
Medium Of Instructions | Mode Of Learning | Mode Of Delivery | Frequency Of Classes |
---|
English | Self Study, Virtual Classroom | Video and Text Based | Weekends |
Courses and Certificate Fees
The fees for course Advanced Certification Program in Big Data is -
Head | Amount |
Total Admission Fee
| ₹ 75,012 (Inclusive of All)
|
EMI Starts at
| ₹ 8,000
|
The Syllabus
- Module 01 – Hadoop Installation and Setup
- Module 02 – Introduction to Big Data Hadoop and Understanding HDFS and MapReduce
- Module 03 – Deep Dive in MapReduce
- Module 04 – Introduction to Hive
- Module 05 – Advanced Hive and Impala
- Module 06 – Introduction to Pig
- Module 07 – Flume, Sqoop and HBase
- Module 08 – Writing Spark Applications Using Scala
- Module 09 – Use Case Bobsrockets Package
- Module 10 – Introduction to Spark
- Module 11 – Spark Basics
- Module 12 – Working with RDDs in Spark
- Module 13 – Aggregating Data with Pair RDDs
- Module 14 – Writing and Deploying Spark Applications
- Module 15 – Project Solution Discussion and Cloudera Certification Tips and Tricks
- Module 16 – Parallel Processing
- Module 17 – Spark RDD Persistence
- Module 18 – Spark MLlib
- Module 19 – Integrating Apache Flume and Apache Kafka
- Module 20 – Spark Streaming
- Module 21 – Improving Spark Performance
- Module 22 – Spark SQL and Data Frames
- Module 23 – Scheduling/Partitioning
Following topics will be available only in self-paced mode:
- Module 24 – ETL Connectivity with Hadoop Ecosystem (Self-Paced)
- Module 25 – Hadoop Application Testing
- Module 26 – Roles and Responsibilities of Hadoop Testing Professional
- Module 27 – Framework Called MRUnit for Testing of MapReduce Programs
- Module 28 – Unit Testing
- Module 29 – Test Execution
- Module 30 – Test Plan Strategy and Writing Test Cases for Testing Hadoop Application
Scala Course Content
- Module 01 – Introduction to Scala
- Module 02 – Pattern Matching
- Module 03 – Executing the Scala Code
- Module 04 – Classes Concept in Scala
- Module 05 – Case Classes and Pattern Matching
- Module 06 – Concepts of Traits with Example
- Module 07 – Scala–Java Interoperability
- Module 08 – Scala Collections
- Module 09 – Mutable Collections Vs. Immutable Collections
- Module 10 – Use Case Bobsrockets Package
Spark Course Content
- Module 11 – Introduction to Spark
- Module 12 – Spark Basics
- Module 13 – Working with RDDs in Spark
- Module 14 – Aggregating Data with Pair RDDs
- Module 15 – Writing and Deploying Spark Applications
- Module 16 – Parallel Processing
- Module 17 – Spark RDD Persistence
- Module 18 – Spark MLlib
- Module 19 – Integrating Apache Flume and Apache Kafka
- Module 20 – Spark Streaming
- Module 21 – Improving Spark Performance
- Module 22 – Spark SQL and Data Frames
- Module 23 – Scheduling/Partitioning
- Module 1 – Splunk Development Concepts
- Module 2 – Basic Searching
- Module 3 – Using Fields in Searches
- Module 4 – Saving and Scheduling Searches
- Module 5 – Creating Alerts
- Module 6 – Scheduled Reports
- Module 7 – Tags and Event Types
- Module 8 – Creating and Using Macros
- Module 9 – Workflow
- Module 10 – Splunk Search Commands
- Module 11 – Transforming Commands
- Module 12 – Reporting Commands
- Module 13 – Mapping and Single Value Commands
- Module 14 – Splunk Reports and Visualizations
- Module 15 – Analyzing, Calculating and Formatting Results
- Module 16 – Correlating Events
- Module 17 – Enriching Data with Lookups
- Module 18 – Creating Reports and Dashboards
- Module 19 – Getting Started with Parsing
- Module 20 – Using Pivot
- Module 21 – Common Information Model (CIM) Add-On
Splunk Administration Topics
- Module 22 – Overview of Splunk
- Module 23 – Splunk Installation
- Module 24 – Splunk Installation in Linux
- Module 25 – Distributed Management Console
- Module 26 – Introduction to Splunk App
- Module 27 – Splunk Indexes and Users
- Module 28 – Splunk Configuration Files
- Module 29 – Splunk Deployment Management
- Module 30 – Splunk Indexes
- Module 31 – User Roles and Authentication
- Module 32 – Splunk Administration Environment
- Module 33 – Basic Production Environment
- Module 34 – Splunk Search Engine
- Module 35 – Various Splunk Input Methods
- Module 36 – Splunk User and Index Management
- Module 37 – Machine Data Parsing
- Module 38 – Search Scaling and Monitoring
- Module 39 – Splunk Cluster Implementation
- Module 01 – Introduction to Data Science using Python
- Module 02 – Python basic constructs
- Module 03 – Maths for DS-Statistics & Probability
- Module 04 – OOPs in Python (Self paced)
- Module 05 – NumPy for mathematical computing
- Module 06 – SciPy for scientific computing
- Module 07 – Data manipulation
- Module 08 – Data visualization with Matplotlib
- Module 09 – Machine Learning using Python
- Module 10 – Supervised learning
- Module 11 – Unsupervised Learning
- Module 12 – Python integration with Spark (Self paced)
- Module 13 – Dimensionality Reduction
- Module 14 – Time Series Forecasting
- Module 01 – Introduction to the Basics of Python
- Module 02 – Sequence and File Operations
- Module 03 – Functions, Sorting, Errors and Exception, Regular Expressions, and Packages
- Module 04 – Python: An OOP Implementation
- Module 05 – Debugging and Databases
- Module 06 – Introduction to Big Data and Apache Spark
- Module 07 – Python for Spark
- Module 08 – Python for Spark: Functional and Object-Oriented Model
- Module 09 – Apache Spark Framework and RDDs
- Module 10 – PySpark SQL and Data Frames
- Module 11 – Apache Kafka and Flume
- Module 12 – PySpark Streaming
- Module 13 – Introduction to PySpark Machine Learning
- Module 01 – Introduction to NoSQL and MongoDB
- Module 02 – MongoDB Installation
- Module 03 – Importance of NoSQL
- Module 04 – CRUD Operations
- Module 05 – Data Modeling and Schema Design
- Module 06 – Data Management and Administration
- Module 07 – Data Indexing and Aggregation
- Module 08 – MongoDB Security
- Module 09 – Working with Unstructured Data
- Module 01 – Introduction to Big Data and Data Collection
- Module 02 – Introduction to Cloud Computing & AWS
- Module 03 – Elastic Compute and Storage Volumes
- Module 04 – Virtual Private Cloud
- Module 05 – Storage – Simple Storage Service (S3)
- Module 06 – Databases and In-Memory DataStores
- Module 07 – Data Storage
- Module 08 – Data Processing
- Module 09 – Data Analysis
- Module 09 – Data Visualization and Data Security
- Module 01 – Introduction to Hadoop and Its Ecosystem, MapReduce and HDFS
- Module 02 – MapReduce
- Module 03 – Introduction to Pig and Its Features
- Module 04 – Introduction to Hive
- Module 05 – Hadoop Stack Integration Testing
- Module 06 – Roles and Responsibilities of Hadoop Testing
- Module 07 – Framework Called MRUnit for Testing of MapReduce Programs
- Module 08 – Unit Testing
- Module 09 – Test Execution of Hadoop: Customized
- Module 10 – Test Plan Strategy Test Cases of Hadoop Testing
- Module 01 – Understanding the Architecture of Storm
- Module 02 – Installation of Apache Storm
- Module 03 – Introduction to Apache Storm
- Module 04 – Apache Kafka Installation
- Module 05 – Apache Storm Advanced
- Module 06 – Storm Topology
- Module 07 – Overview of Trident
- Module 08 – Storm Components and Classes
- Module 09 – Cassandra Introduction
- Module 10 – Boot Stripping
- Module 01 – What is Kafka – An Introduction
- Module 02 – Multi Broker Kafka Implementation
- Module 03 – Multi Node Cluster Setup
- Module 04 – Integrate Flume with Kafka
- Module 05 – Kafka API
- Module 06 – Producers & Consumers
- Module 01 – Advantages and Usage of Cassandra
- Module 02 – CAP Theorem and No SQL DataBase
- Module 03 – Cassandra fundamentals, Data model, Installation and setup
- Module 04 – Cassandra Configuration
- Module 05 – Summarization, node tool commands, cluster, Indexes, Cassandra & MapReduce, Installing Ops-center
- Module 06 – Multi Cluster setup
- Module 07 – Thrift/Avro/Json/Hector Client
- Module 08 – Datastax installation part,· Secondary index
- Module 09 – Advance Modelling
- Module 10 – Deploying the IDE for Cassandra applications
- Module 11 – Cassandra Administration
- Module 12 – Cassandra API and Summarization and Thrift
- Module 01 – Core Java Concepts
- Module 02 – Writing Java Programs using Java Principles
- Module 03 – Language Conceptuals
- Module 04 – Operating with Java Statements
- Module 05 – Concept of Objects and Classes
- Module 06 – Introduction to Core Classes
- Module 07 – Inheritance in Java
- Module 08 – Exception Handling in Detail
- Module 09 – Getting started with Interfaces and Abstract Classes
- Module 10 – Overview of Nested Classes
- Module 11 – Getting started with Java Threads
- Module 12 – Overview of Java Collections
- Module 13 – Understanding JDBC
- Module 14 – Java Generics
- Module 15 – Input/Output in Java
- Module 16 – Getting started with Java Annotations
- Module 17 – Reflection and its Usage
- Introduction to Linux – Establishing the fundamental knowledge of how Linux works and how you can begin with Linux OS.
- Linux Basics – File Handling, data extraction, etc.
- Hands-on Sessions And Assignments for Practice – Strategically curated problem statements for you to start with Linux.