Careers360 Logo
Interested in this College?
Get updates on Eligibility, Admission, Placements Fees Structure
Compare

Quick Facts

Medium Of InstructionsMode Of LearningMode Of DeliveryFrequency Of Classes
EnglishSelf Study, Virtual ClassroomVideo and Text BasedWeekends

Courses and Certificate Fees

Certificate AvailabilityCertificate Providing Authority
yesIBMBelhaven University, Mississippi

The Syllabus

  • Module 01 – Introduction to Data Science with R
  • Module 02 – Data Exploration
  • Module 03 – Data Manipulation
  • Module 04 – Data Visualization
  • Module 05 – Introduction to Statistics
  • Module 06 – Machine Learning
  • Module 07 – Logistic Regression
  • Module 08 – Decision Trees and Random Forest
  • Module 09 – Unsupervised Learning
  • Module 10 – Association Rule Mining and Recommendation Engines
Self-paced Course Content
  • Module 11 – Introduction to Artificial Intelligence
  • Module 12 – Time Series Analysis
  • Module 13 – Support Vector Machine (SVM)
  • Module 14 – Naïve Bayes
  • Module 15 – Text Mining

  • Module 01 – Python Environment Setup and Essentials
  • Module 02 – Python language Basic Constructs
  • Module 03 – OOP concepts in Python
  • Module 04 – Database connection
  • Module 05 – NumPy for mathematical computing
  • Module 06 – SciPy for scientific computing
  • Module 07 – Matplotlib for data visualization
  • Module 08 – Pandas for data analysis and machine learning
  • Module 09 – Exception Handling
  • Module 10 – Multi Threading & Race Condition
  • Module 11 – Packages and Functions
  • Module 12 – Web scraping with Python

  • Module 01 – Introduction to Machine Learning
  • Module 02 – Supervised Learning and Linear Regression
  • Module 03 – Classification and Logistic Regression
  • Module 04 – Decision Tree and Random Forest
  • Module 05 – Naïve Bayes and Support Vector Machine (self-paced)
  • Module 06 – Unsupervised Learning
  • Module 07 – Natural Language Processing and Text Mining (self-paced)
  • Module 08 – Introduction to Deep Learning
  • Module 09 – Time Series Analysis (self-paced)

  • Module 01 – Introduction to Deep Learning and Neural Networks
  • Module 02 – Multi-layered Neural Networks
  • Module 03 – Artificial Neural Networks and Various Methods
  • Module 04 – Deep Learning Libraries
  • Module 05 – Keras API
  • Module 06 – TFLearn API for TensorFlow
  • Module 07 – Dnns (deep neural networks)
  • Module 08 – Cnns (convolutional neural networks)
  • Module 09 – Rnns (recurrent neural networks)
  • Module 10 – Gpu in deep learning
  • Module 11 – Autoencoders and restricted boltzmann machine (rbm)
  • Module 12 – Deep learning applications
  • Module 13 – Chatbots

  • Module 01 – Overview of Natural Language Processing and Text Mining
  • Module 02 – Text Mining, Cleaning, and Pre-processing
  • Module 03 – Text Classification
  • Module 04 – Sentence Structure, Sequence Tagging, Sequence Tasks, and Language Modeling
  • Module 05 – Introduction to Semantics and Vector Space Models
  • Module 06 – Dialog Systems

  • Module 01 – RBM and DBNs & Variational AutoEncoder
  • Module 02 – Object Detection using Convolutional Neural Net
  • Module 03 – Generating images with Neural Style and Working with Deep Generative Models
  • Module 04 – Distributed & Parallel Computing for Deep Learning Models
  • Module 05 – Reinforcement Learning
  • Module 06 – Deploying Deep Learning Models and Beyond

  • Module 01 – Introduction to Big Data and Data Collection
  • Module 02 – Introduction to Cloud Computing & AWS
  • Module 03 – Elastic Compute and Storage Volumes
  • Module 04 – Virtual Private Cloud
  • Module 05 – Storage – Simple Storage Service (S3)
  • Module 06 – Databases and In-Memory DataStores
  • Module 07 – Data Storage
  • Module 08 – Data Processing
  • Module 09 – Data Analysis
  • Module 09 – Data Visualization and Data Security

  • Module 01 – Entering Data
  • Module 02 – Referencing in Formulas
  • Module 03 – Name Range
  • Module 04 – Understanding Logical Functions
  • Module 05 – Getting started with Conditional Formatting
  • Module 06 – Advanced-level Validation
  • Module 07 – Important Formulas in Excel
  • Module 08 – Working with Dynamic table
  • Module 09 – Data Sorting
  • Module 10 – Data Filtering
  • Module 11 – Chart Creation
  • Module 12 – Various Techniques of Charting
  • Module 13 – Pivot Tables in Excel
  • Module 14 – Ensuring Data and File Security
  • Module 15 – Getting started with VBA Macros
  • Module 16 – Ranges and Worksheet in VBA
  • Module 17 – IF condition
  • Module 18 – Loops in VBA
  • Module 19 – Debugging in VBA
  • Module 20 – Dashboard Visualization
  • Module 21 – Principles of Charting
  • Module 22 – Getting started with Pivot Tables
  • Module 23 – Statistics with Excel

  • Module 01 – Introduction to Data Visualization and The Power of Tableau
  • Module 02 – Architecture of Tableau
  • Module 03 – Charts and Graphs
  • Module 04 – Working with Metadata and Data Blending
  • Module 05 – Advanced Data Manipulations
  • Module 06 – Working with Filters
  • Module 07 – Organizing Data and Visual Analytics
  • Module 08 – Working with Mapping
  • Module 09 – Working with Calculations and Expressions
  • Module 10 – Working with Parameters
  • Module 11 – Dashboards and Stories
  • Module 12 – Tableau Prep
  • Module 13 – Integration of Tableau with R
Back to top