Careers360 Logo
Interested in this College?
Get updates on Eligibility, Admission, Placements Fees Structure
Compare

Quick Facts

Medium Of InstructionsMode Of LearningMode Of Delivery
EnglishSelf Study, Virtual ClassroomVideo and Text Based

Courses and Certificate Fees

Certificate AvailabilityCertificate Providing Authority
yesIIT Delhi

The Syllabus

  • Probability theory refresher 
  • Introduction to stochastic process 
  • Introduction to stochastic process (contd.)

  • Probability theory refresher (contd.) 
  • Problems in random variables and distributions 
  • Problems in Sequence of random variables

  • Definition and simple stochastic process 
  • Definition, classification and Examples 
  • Simple stochastic processes

  • iscrete-time Markov chains 
  • Introduction, Definition and Transition Probability Matrix 
  • Chapman-Kolmogorov Equations 
  • Classification of States and Limiting Distributions

  • Discrete-time Markov chains (contd.) 
  • Limiting and Stationary Distributions 
  • Limiting Distributions, Ergodicity and stationary distributions 
  • Time Reversible Markov Chain, Application of Irreducible Markov chains in Queueing Models 
  • Reducible Markov Chains

  • Continuous-time Markov chains 
  • Definition, Kolmogrov Differential Equation and Infinitesimal Generator Matrix 
  • Limiting and Stationary Distributions, Birth Death Processes 
  • Poisson processes

  • Continuous-time Markov Chains (contd.) 
  • M/M/1 Queueing model

  • Applications of CTMC 
  • Queueing networks 
  • Communication systems 
  • Stochastic Petri Nets

  • Martingales 
  • Conditional Expectation and filtration 
  • Definition and simple examples

  • Brownian Motion 
  • Definition and Properties 
  • Processes Derived from Brownian Motion 
  • Stochastic Differential Equation

  • Renewal Processes Renewal Function and Equation 
  • Generalized Renewal Processes and Renewal Limit Theorems 
  • Markov Renewal and Markov Regenerative Processes 
  • Non Markovian Queues 
  • Application of Markov Regenerative Processes

  • Branching Processes
  • Stationary and Autoregressive Processes

Articles

Back to top