The electrochemical series, also known as the electrode potential series, was developed by the German chemist Walter Nernst. Nernst's work in the late 19th century provided a theoretical framework for understanding electrochemical reactions and electrode potentials. Walter Nernst’s development of the electrochemical series provided crucial insights into electrochemical reactions and their potential, greatly advancing the field of electrochemistry.
JEE Main 2025: Chemistry Formula | Study Materials | High Scoring Topics | Preparation Guide
JEE Main 2025: Syllabus | Sample Papers | Mock Tests | PYQs | Study Plan 100 Days
NEET 2025: Syllabus | High Scoring Topics | PYQs
Electrochemical series are discovered based on electrode potential and the Nernst equation in such a way that the electrochemical series is based on the standard electrode potentials of various half-reactions. These potentials are measured relative to a standard reference electrode, typically the standard hydrogen electrode (SHE), which is assigned a potential of 0 volts. And Nernst equation as Nernst formulated the Nernst equation, which relates the electrode potential to the concentration of ions in solution. This equation helps predict how the electrode potential changes with concentration and temperature.
$\mathrm{Li}^{+} / \mathrm{Li}$ | $\mathrm{Li}^{+}$(aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Li}($ s) | $-3.04$ |
$\mathrm{K}^{+} / \mathrm{K}$ | $\mathrm{K}^{+}$(aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{K}(\mathrm{s})$ | $-2.93$ |
$\mathrm{Ca}^{2+} / \mathrm{Ca}$ | $\mathrm{Ca}^{2+}$ (aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ca}($ s) | $-2.87$ |
$\mathrm{Na}^{+} / \mathrm{Na}$ | $\mathrm{Na}^{+}$(aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Na}$ (s) | $-2.71$ |
$\mathrm{Mg}^{2+} / \mathrm{Mg}$ | $\mathrm{Mg}^{2+}$ (aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mg}(\mathrm{s})$ | $-2.37$ |
$\mathrm{Pt}, \mathrm{H}_2 / \mathrm{H}^{-}$ | $\mathrm{H}_2(\mathrm{~g})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}^{-}$(aq.) | $-2.25$ |
$\mathrm{Al}^{3+} / \mathrm{Al}$ | $\mathrm{Al}^{3+}$ (aq.) $+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}($ s) | $-1.66$ |
$\mathrm{Mn}^{2+} / \mathrm{Mn}$ | $\mathrm{Mn}^{2+}(\mathrm{aq})+.2 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}(\mathrm{s})$ | -0.9 |
$\mathrm{OH}^{-} / \mathrm{H}_2, \mathrm{Pt}$ | $2 \mathrm{H}_2 \mathrm{O}(\ell)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_2(\mathrm{~g})+2 \mathrm{OH}^{-}($aq. $)$ | $-0.83$ |
$\mathrm{Zn}^{2+} / \mathrm{Zn}$ | $\mathrm{Zn}^{2+}$ (aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}(\mathrm{s})$ | $0.76$ |
$\mathrm{Cr}^{3+} / \mathrm{Cr}$ | $\mathrm{Cr}^{3+}$ (aq.) $+3 \mathrm{e}^{-} \longrightarrow \mathrm{Cr}$ (s) | $-0.74$ |
$\mathrm{Fe}^{2+} / \mathrm{Fe}$ | $\mathrm{Fe}^{2+}$ (aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}$ (s) | $-0.44$ |
$\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}, \mathrm{Pt}$ | $\mathrm{Cr}^{3+}$ (aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Cr}^{2+}$ (aq.) | $-0.41$ |
Cd2+/Cd | $\mathrm{Cd}^{2+}$ (aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cd}(\mathrm{s})$ | -0.40 |
Co2+/Co | $\mathrm{Co}^{2+}$ (aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{Co}$ (s) | -0.28 |
Ni2+/Ni | $\mathrm{Ni}^{2+}$ (aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ni}(\mathrm{s})$ | -0.25 |
$\mathrm{I}^{-} / \mathrm{AgI} / \mathrm{Ag}$ | $\mathrm{AgI}(\mathrm{s})+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{I}^{-}$(aq. $)$ | -0.15 |
$\mathrm{Sn}^{2+} / \mathrm{Sn}$ | $\mathrm{Sn}^{2+}$ (aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{Sn}(\mathrm{s})$ | -0.14 |
$\mathrm{Pb}^{2+} / \mathrm{Pb}$ | $\mathrm{Pb}^{2+}$ (aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb}$ (s) | -0.13 |
$\mathrm{Fe}^{3+} / \mathrm{Fe}$ | $\mathrm{Fe}^{3+}$ (aq. $)+3 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}$ (s) | -0.04 |
$\mathrm{H}^{+} / \mathrm{H}_2, \mathrm{Pt}$ | $2 \mathrm{H}^{+}$(aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_2$ (g) | 0.00 |
$\mathrm{Br}^{-} / \mathrm{AgBr} / \mathrm{Ag}$ | $\mathrm{AgBr}(\mathrm{s})+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Br}^{-}(\mathrm{aq}$. | 0.10 |
$\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}, \mathrm{Pt}$ | $\mathrm{Cu}^{2+}$ (aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}$(aq.) | 0.16 |
$\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}, \mathrm{Pt}$ | $\mathrm{Sn}^{4+}$ (aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{Sn}^{2+}$ (aq.) | 0.15 |
$\mathrm{SO}_4^{2-}+\mathrm{H}_2 \mathrm{SO}_3$ | $\mathrm{SO}_4^{2-}$ (aq.) $+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_2 \mathrm{SO}_3$ (aq.) $+\mathrm{H}_2 \mathrm{O}(\ell)$ | 0.17 |
$\mathrm{Cl}^{-} / \mathrm{AgCl} / \mathrm{Ag}$ | $\mathrm{AgCl}(\mathrm{s})+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-}$(aq. $)$ | 0.22 |
$\mathrm{Cl}^{-} / \mathrm{Hg}_2 \mathrm{Cl}_2 / \mathrm{Hg}(\mathrm{Pt})$ | $\mathrm{Hg}_2 \mathrm{Cl}_2(\mathrm{~s})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Hg}(\ell)+2 \mathrm{Cl}^{-}$(aq.) | 0.27 |
$\mathrm{Cu}^{2+} / \mathrm{Cu}$ | $\mathrm{Cu}^{2+}(\mathrm{aq})+.2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{s})$ | 0.34 |
$\mathrm{Pt}, \mathrm{O}_2 / \mathrm{OH}^{-}$ | $\mathrm{O}_2$ (g) $+2 \mathrm{H}^{+}$(aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_2 \mathrm{O}_2$ (aq.) | 0.40 |
$\mathrm{Cu}^{+} / \mathrm{Cu}$ | $\mathrm{Cu}^{+}$(aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}$ (s) | 0.52 |
$\mathrm{I}_2 / \mathrm{I}^{-}, \mathrm{Pt}$ | $1 / 2 \mathrm{I}_2(\mathrm{~s})+\mathrm{e}^{-} \longrightarrow \mathrm{I}^{-}(\mathrm{aq}$. | 0.54 |
$\mathrm{Pt}, \mathrm{O}_2 / \mathrm{H}_2 \mathrm{O}_2$ | $\mathrm{O}_2$ (g) $+2 \mathrm{H}^{+}$(aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_2 \mathrm{O}_2$ (aq.) | 0.68 |
$\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}, \mathrm{Pt}$ | $\mathrm{Fe}^{3+}$ (aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}$ (aq.) | 0.77 |
$\mathrm{Hg}_2^{2+} / \mathrm{Hg}(\mathrm{Pt})$ | $\mathrm{Fe}^{3+}$ (aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}$ (aq.) | 0.79 |
$\mathrm{Ag}^{+} / \mathrm{Ag}$ | $\mathrm{Ag}^{+}$(aq. $)+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s})$ | 0.80 |
$\mathrm{Hg}^{2+} / \mathrm{Hg}_2^{2+}$ | $2 \mathrm{Hg}^{2+}(\mathrm{aq})+.2 \mathrm{e}^{-} \longrightarrow \mathrm{Hg}_2^{2+}(\mathrm{aq})$. | 0.92 |
$\mathrm{NO}_3^{-} / \mathrm{NO}, \mathrm{Pt}$ | $\mathrm{NO}_3^{-}+4 \mathrm{H}$ (aq.) $+3 \mathrm{e}^{-} \longrightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_2 \mathrm{O}(\ell)$ | 0.97 |
$\mathrm{Pt}, \mathrm{Br}_2 / \mathrm{Br}^{-}$ | $\mathrm{Br}_2(\ell)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Br}^{-}$(aq. $)$ | 1.09 |
$\mathrm{MnO}_2 / \mathrm{Mn}^{2+}$ | $\mathrm{MnO}_2(\mathrm{~s})+4 \mathrm{H}^{+}$(aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}($ aq. $)+2 \mathrm{H}_2 \mathrm{O}(\ell)$ | 1.23 |
$\mathrm{H}^{+} / \mathrm{O}_2 / \mathrm{Pt}$ | $\mathrm{O}_2$ (g) $+4 \mathrm{H}^{+}$(aq.) $+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_2 \mathrm{O}(\ell)$ | 1.23 |
$\mathrm{Cr}_2 \mathrm{O}_7^{2-} / \mathrm{Cr}^{3+}$ | $\mathrm{Cr}_2 \mathrm{O}_7^{2-}$ (aq.) $+14 \mathrm{H}^{+}$(aq.) $+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}$ (aq.) $+7 \mathrm{H}_2 \mathrm{O}(\ell)$ | |
$\mathrm{Cl}_2 / \mathrm{Cl}^{-}$ | $1 / 2 \mathrm{Cl}_2$ (g) $+\mathrm{e}^{-} \longrightarrow \mathrm{Cl}^{-}$(aq.) | 1.36 |
$\mathrm{Au}^{3+} / \mathrm{Au}$ | $\mathrm{Au}^{3+}$ (aq.) $+3 \mathrm{e}^{-} \longrightarrow \mathrm{Au}$ (s) | 1.40 |
$\mathrm{MnO}_4^{-} / \mathrm{Mn}^{2+}, \mathrm{H}^{+} / \mathrm{Pt}$ | $\mathrm{MnO}_4^{-}$(aq.) $+8 \mathrm{H}^{+}$(aq.) $+5 \mathrm{e} \longrightarrow \mathrm{Mn}^{2+}$ (aq.) $+4 \mathrm{H}_2 \mathrm{O}(\ell)$ | 1.51 |
$\mathrm{Ce}^{4+} / \mathrm{Ce}^{3+}, \mathrm{Pt}$ | $\mathrm{Ce}^{4+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ce}^{3+}$ (aq.) | 1.72 |
$\mathrm{H}_2 \mathrm{O}_2 / \mathrm{H}_2 \mathrm{O}$ | $\mathrm{H}_2 \mathrm{O}_2(\ell)+2 \mathrm{H}^{+}($aq. $)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_2 \mathrm{O}(\ell)$ | 1.78 |
$\mathrm{Co}^{3+} / \mathrm{Co}^{2+}, \mathrm{Pt}$ | $\mathrm{Co}^{3+}$ (aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Co}^{2+}$ (aq.) | 1.81 |
$\mathrm{O}_3 / \mathrm{O}_2$ | $\mathrm{O}_3(\mathrm{~g})+2 \mathrm{H}^{+}$(aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{O}_2(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\ell)$ | 2.07 |
$\mathrm{Pt}, \mathrm{F}_2 / \mathrm{F}$ | $\mathrm{F}_2(\mathrm{~g})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{~F}^{-}$(aq. $)$ | 2.87 |
Metals with greater negative Eo (reduction) are strongly electropositive and have more reactivity. It means a lower-placed element or metal in the given series is less reactive is replaced by upper placed or higher element while a higher element can be coated by a lower metal.
Example, (i) $\mathrm{Zn}+\mathrm{CuSO}_4 \rightarrow \mathrm{ZnSO}_4+\mathrm{Cu}$
Here Cu is replaced by Zn due to more oxidation potential or reactivity of Zn, while Zn is coated by Cu. Zn- Cu couple is also coated by Cu. Here, the solution turns from blue to colorless and the rod becomes Reddish-brown from Gray white.
(ii) $\mathrm{Cu}+2 \mathrm{AgNO}_3 \rightarrow \mathrm{Cu}\left(\mathrm{NO}_3\right)_2+2 \mathrm{Ag}$
Here solution becomes colorless to blue and the rod becomes reddish-brown to white.
Increasing ease of deposition of some cations
$\mathrm{Li}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{+2}, \mathrm{Na}^{+}, \mathrm{Mg}^{+2}, \mathrm{Al}^{+3}, \mathrm{Zn}^{+2}, \mathrm{Fe}^{+2}, \mathrm{H}^{+}, \mathrm{Cu}^{+2}, \mathrm{Ag}^{+}, \mathrm{Au}^{+3}$
Increasing ease of discharge of some anion$\mathrm{SO}_4^{-2}<\mathrm{NO}_3^{-}<\mathrm{OH}^{-}<\mathrm{Cl}^{-}<\mathrm{Br}^{-}$
Example.1
1. Which of the following can replace hydrogen from its compounds, where it has a +1 oxidation state?
a)Na
b)Hg
c)Zn
d)Fe
1)a,b,c
2)c,d
3)a,c
4) (correct)a,c,d
Solution
The standard reduction potential of a large number of electrodes has been measured using a standard hydrogen electrode as the reference electrode. These various electrodes can be arranged in increasing electrode potential.
According to the electrochemical Series -
$\mathrm{Na}^{+} / \mathrm{Na} \mathrm{Zn}{ }^{2+} / \mathrm{Zn}, \mathrm{Fe}^{2+} / \mathrm{Fe}, \mathrm{H}^{+} / \mathrm{H}_2, \mathrm{Hg}_2^{2+} / \mathrm{Hg}$
Hg lies below hydrogen in the electrochemical series and is, therefore, less reactive
Hence, the answer is the option (4).
Example.2
Which of the following metals is the least reactive?
1)Al
2) (correct)Cu
3)Fe
4)Zn
Solution
According to the electrochemical Series -
The order of the reduction potential is:
$\mathrm{Al}^{3+} / \mathrm{Al} \mathrm{Zn}^{2+} / \mathrm{Zn}, \mathrm{Fe}^{2+} / \mathrm{Fe}^{2+}, \mathrm{Cu}^{2+} / \mathrm{Cu}$
When we arrange these metals in order of their electropositive character, then Al>Zn>Fe>Cu
Hence, the answer is the option (2).
Example.3
3. Is it possible to store, copper sulphate solution in a zinc vessel?
1) (correct)No
2)yes
3)yes, only above 250C
4)can't say
Solution
It is not possible to store, copper sulfate solution in a zinc vessel because Cu will be deposited on zinc.
Hence, the answer is the option (1).
Example.4
4. Given :
$\mathrm{Co}^{3+}+e^{-} \rightarrow \mathrm{Co}^{2+}+; \mathrm{E}^0=+1.81 V$
$\mathrm{Pb}^{4+}+2 e^{-} \rightarrow \mathrm{Pb}^{2+}+; E^0=+1.67 \mathrm{~V}$
$C e^{4+}+e^{-} \rightarrow C e^{3+}+; E^0=+1.61 V$
$B i^{3+}+3 e^{-} \rightarrow B i ; E^0=+0.20 \mathrm{~V}$
Oxidizing power of the species will increase in the order:
1) (correct)$\mathrm{Bi}^{3+}<\mathrm{Ce}^{4+}<\mathrm{Pb}^{4+}<\mathrm{Co}^{3+}$
2)$\mathrm{Ce}^{4+}<\mathrm{Pb}^{4+}<\mathrm{Bi}^{3+}<\mathrm{Co}^{3+}$
3)$\mathrm{Co}^{3+}<\mathrm{Ce}^{4+}<\mathrm{Bi}^{3+}<\mathrm{Pb}^{4+}$
4)$\mathrm{Co}^{3+}<\mathrm{Pb}^{4+}<\mathrm{Ce}^{4+}<\mathrm{Bi}^{3+}$
Solution
The greater the Standard Reduction Potential, the more will be its oxidizing power.
$\therefore$ The correct sequence will be :
$\mathrm{Co}^{3+}>\mathrm{Pb}^{4+}>\mathrm{Ce}^{4+}>\mathrm{Bi}^{3+}$
Hence, the answer is the option (1).
Example.5
5. The correct order of reduction potentials of the following pairs is
A. $\mathrm{Cl}_2 \mid \mathrm{Cl}^{-}$
B. $\mathrm{I}_2 \mid \mathrm{I}^{-}$
C. $\mathrm{Ag}^{+} \mid \mathrm{Ag}$
D. $\mathrm{Na}^{+} \mid \mathrm{Na}$
E. $\mathrm{Li}^{+} \mid \mathrm{Li}$
1) (correct)$A>C>B>D>E$
2)$A>B>C>D>E$
3)$A>C>B>E>D$
4)$A>B>C>E>D$
Solution
Fact-based on the reduction potential values.
The correct order will be
$\mathrm{Cl}_2\left|\mathrm{Cl}^{\ominus}>\mathrm{Ag}^{+}\right| \mathrm{Ag}>\mathrm{I}_2\left|\mathrm{I}^{\ominus}>\mathrm{Na}^{\oplus}\right| \mathrm{Na}>\mathrm{Li}^{\oplus} \mid \mathrm{Li}$
Thus, the given electrode couple can be arranged in order of their reduction potential values as
$\mathrm{A}>\mathrm{C}>\mathrm{B}>\mathrm{D}>\mathrm{E}$
Hence, the answer is the option (1).
Example.6
6. In van der Waals equation of state of the gas law, the constant b is a measure of
1)intermolecular repulsions
2)intermolecular attraction
3) (correct)volume occupied by the molecules
4)intermolecular collisions per unit volume.
Solution
As we learned in
Vander Waal equation for real gas -
$\left(p+\frac{a n^2}{v}\right)(V-n b)=n R T$
- wherein
a, b : Vander waal Constants, P- Pressure, V- Volume, n- No. of moles, R- Gas Constant, T- Temperature
The constant b is a measure of the volume of the molecule
$b=4 N_A \times \frac{4}{3} \pi r^3$
The correct option is 3.
Electrochemical cells are devices that convert chemical energy into electrical energy through redox reactions. There are two main types: galvanic (or voltaic) cells, which produce electrical energy from spontaneous chemical reactions, and electrolytic cells, which require an external power source to drive non-spontaneous reactions. A typical electrochemical cell consists of two electrodes (anode and cathode) and an electrolyte. The anode is where oxidation occurs, and the cathode is where reduction takes place. The flow of electrons between the electrodes through an external circuit generates electrical energy.
19 Oct'24 03:02 PM
10 Oct'24 11:27 AM
10 Oct'24 11:24 AM
10 Oct'24 09:38 AM
10 Oct'24 07:54 AM
10 Oct'24 01:02 AM
10 Oct'24 12:56 AM
10 Oct'24 12:52 AM
10 Oct'24 12:44 AM