Think about how, when you turn a fan’s regulator, the speed changes — but if you wanted to know what setting gives a particular speed, you’d reverse that process. That’s exactly what inverse trigonometric functions do — they help us “undo” trigonometric functions. Finding their derivatives lets us understand how these reverse relationships change with respect to $x$. In this article, you’ll learn the derivative formulas of inverse trigonometric functions, their derivations, important trigonometric identities, graphs, and practice questions to strengthen your conceptual clarity in mathematics for exams like Class 12 Boards, JEE, and CUET.
This Story also Contains
Inverse trigonometric functions, also known as anti-trigonometric functions, arcus functions, or cyclometric functions, are used to determine the angle corresponding to a given trigonometric value. In simple terms, while a trigonometric function gives the ratio of sides of a triangle, its inverse function helps you find the angle that produces that ratio.
These functions play a crucial role in Class 11 calculus, especially in topics related to differentiation and integration. A strong understanding of inverse trigonometric functions is essential for solving higher-order calculus problems, simplifying expressions, and handling questions commonly asked in board exams and competitive entrance exams.
Inverse trigonometric functions are the inverse of standard trigonometric functions like $\sin$, $\cos$, $\tan$, $\cot$, $\sec$, and $\csc$.
The domain defines the set of all possible input values for which the inverse trigonometric functions are defined:
$\sin^{-1}x$, domain: $[-1, 1]$
$\cos^{-1}x$, domain: $[-1, 1]$
$\tan^{-1}x$, domain: $\mathbb{R}$
$\csc^{-1}x$, domain: $(-\infty, -1] \cup [1, \infty)$
$\sec^{-1}x$, domain: $(-\infty, -1] \cup [1, \infty)$
$\cot^{-1}x$, domain: $\mathbb{R}$
The principal value defines the main range for which the inverse trigonometric function gives a unique value.
$\sin^{-1}(\sin \theta) = \theta$, for all $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\cos^{-1}(\cos \theta) = \theta$, for all $\theta \in [0, \pi]$
$\tan^{-1}(\tan \theta) = \theta$, for all $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$\cot^{-1}(\cot \theta) = \theta$, for all $\theta \in (0, \pi)$
$\sec^{-1}(\sec \theta) = \theta$, for all $\theta \in [0, \pi] - {\frac{\pi}{2}}$
$\csc^{-1}(\csc \theta) = \theta$, for all $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - {0}$
Each inverse trigonometric function comes with restrictions to ensure it gives a unique output angle for every valid input value of $x$.
For instance:
$\sin^{-1}(x)$ and $\tan^{-1}(x)$ are odd functions, meaning $\sin^{-1}(-x) = -\sin^{-1}(x)$ and $\tan^{-1}(-x) = -\tan^{-1}(x)$.
$\cos^{-1}(x)$, on the other hand, is neither odd nor even, because it doesn’t show symmetry about the origin or the y-axis.
$\sec^{-1}(x)$ and $\csc^{-1}(x)$ are defined only for $|x| \geq 1$, since their corresponding trigonometric values never lie between $-1$ and $1$.
To define an inverse function properly, each trigonometric function is restricted to a specific principal branch where it is one-to-one. The corresponding inverse is then defined on that range.
| Function | Definition | Domain | Range (Principal Value Branch) |
|---|---|---|---|
| $\sin^{-1}(x)$ | $\sin(y) = x$ | $[-1, 1]$ | $\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]$ |
| $\cos^{-1}(x)$ | $\cos(y) = x$ | $[-1, 1]$ | $[0, \pi]$ |
| $\tan^{-1}(x)$ | $\tan(y) = x$ | $\mathbb{R}$ | $\left(-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right)$ |
| $\cot^{-1}(x)$ | $\cot(y) = x$ | $\mathbb{R}$ | $(0, \pi)$ |
| $\sec^{-1}(x)$ | $\sec(y) = x$ | $(-\infty, -1] \cup [1, \infty)$ | $[0, \pi] - {\dfrac{\pi}{2}}$ |
| $\csc^{-1}(x)$ | $\csc(y) = x$ | $(-\infty, -1] \cup [1, \infty)$ | $\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right] - {0}$ |
The derivatives of inverse trigonometric functions are a core concept in Class 11 calculus and are widely used in solving differentiation problems, simplifying trigonometric identities, evaluating integrals, and handling questions from coordinate geometry. These derivative formulas help determine the rate of change of an inverse trigonometric function with respect to a variable like $x$, which is essential for both board exams and competitive exams.
This section presents a comprehensive table of standard derivatives of inverse trigonometric functions, followed by clear, step-by-step derivations of each formula. The inverse functions covered include $\sin^{-1}x$, $\cos^{-1}x$, $\tan^{-1}x$, $\cot^{-1}x$, $\sec^{-1}x$, and $\csc^{-1}x$, explained using simple methods aligned with the Class 11 NCERT syllabus.
The derivation of these formulas is based on the chain rule and implicit differentiation. To find the derivative of an inverse trigonometric function, assume the function equals an angle (say $y$), then convert it into its trigonometric form and differentiate both sides with respect to $x$.
Let’s derive each one below.
Let $y = \sin^{-1}x$
Then, $\sin y = x$
Differentiating both sides with respect to $x$:
$\cos y \dfrac{dy}{dx} = 1$
We know $\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$
So, $\dfrac{dy}{dx} = \dfrac{1}{\sqrt{1 - x^2}}$
Hence,
$\dfrac{d}{dx}(\sin^{-1}x) = \dfrac{1}{\sqrt{1 - x^2}}$
Let $y = \cos^{-1}x$
Then, $\cos y = x$
Differentiating both sides with respect to $x$:
$-\sin y \dfrac{dy}{dx} = 1$
We know $\sin y = \sqrt{1 - \cos^2 y} = \sqrt{1 - x^2}$
So, $\dfrac{dy}{dx} = -\dfrac{1}{\sqrt{1 - x^2}}$
Therefore,
$\dfrac{d}{dx}(\cos^{-1}x) = -\dfrac{1}{\sqrt{1 - x^2}}$
Let $y = \tan^{-1}x$
Then, $\tan y = x$
Differentiating both sides with respect to $x$:
$\sec^2 y \dfrac{dy}{dx} = 1$
We know $\sec^2 y = 1 + \tan^2 y = 1 + x^2$
So, $\dfrac{dy}{dx} = \dfrac{1}{1 + x^2}$
Hence,
$\dfrac{d}{dx}(\tan^{-1}x) = \dfrac{1}{1 + x^2}$
Let $y = \cot^{-1}x$
Then, $\cot y = x$
Differentiating both sides with respect to $x$:
$-\csc^2 y \dfrac{dy}{dx} = 1$
We know $\csc^2 y = 1 + \cot^2 y = 1 + x^2$
So, $\dfrac{dy}{dx} = -\dfrac{1}{1 + x^2}$
Therefore,
$\dfrac{d}{dx}(\cot^{-1}x) = -\dfrac{1}{1 + x^2}$
Let $y = \sec^{-1}x$
Then, $\sec y = x$
Differentiating both sides with respect to $x$:
$\sec y \tan y \dfrac{dy}{dx} = 1$
So, $\dfrac{dy}{dx} = \dfrac{1}{\sec y \tan y}$
Now,
$\sec y = x$ and $\tan y = \sqrt{x^2 - 1}$
Hence, $\dfrac{dy}{dx} = \dfrac{1}{x\sqrt{x^2 - 1}}$
For all valid $x$, we take the absolute value of $x$, giving:
$\dfrac{d}{dx}(\sec^{-1}x) = \dfrac{1}{|x|\sqrt{x^2 - 1}}$
Let $y = \csc^{-1}x$
Then, $\csc y = x$
Differentiating both sides with respect to $x$:
$-\csc y \cot y \dfrac{dy}{dx} = 1$
So, $\dfrac{dy}{dx} = -\dfrac{1}{\csc y \cot y}$
We know $\csc y = x$ and $\cot y = \sqrt{x^2 - 1}$
Therefore, $\dfrac{dy}{dx} = -\dfrac{1}{x\sqrt{x^2 - 1}}$
Including the absolute value of $x$ for general validity:
$\dfrac{d}{dx}(\csc^{-1}x) = -\dfrac{1}{|x|\sqrt{x^2 - 1}}$
Below is the table of essential identities that commonly appear while differentiating inverse trigonometric functions. These identities help simplify expressions, manage square roots, and apply the correct derivative formulas with ease.
| Identity / Pattern | Where It Is Used | Why It Helps |
|---|---|---|
| $1 - x^2$ | Derivatives of $\sin^{-1}x$, $\cos^{-1}x$ | Appears under the square root; helps identify the correct formula. |
| $1 + x^2$ | Derivatives of $\tan^{-1}x$, $\cot^{-1}x$ | Simplifies rational expressions in the derivative. |
| $x^2 - 1$ | Derivatives of $\sec^{-1}x$, $\csc^{-1}x$ | Ensures correct domain handling and formula usage. |
| $x = \sin\theta$ or $x = \cos\theta$ | Simplifying inner expressions | Converts roots into trigonometric forms for easier differentiation. |
| $\sin^2\theta + \cos^2\theta = 1$ | Any step with trigonometric substitution | Helps reduce radical expressions after substitution. |
| $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$ | Rewriting expressions before differentiation | Lets you switch forms to simplify the derivative. |
| $\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$ | Transforming inverse trig expressions | Useful when one form gives a simpler derivative. |
Example 1: The derivative of $\tan ^{-1}\left\{\frac{\sqrt{1+x^2}-1}{x}\right\}$ with respect to $\tan ^{-1}\left\{\frac{2 x \sqrt{1-x^2}-1}{1-2 x^2}\right\}$ at $x=\frac{1}{2}$ is:
[JEE Main 2020]
1) $\frac{2 \sqrt{3}}{5}$
2) $\frac{\sqrt{3}}{10}$
3) $\frac{2 \sqrt{3}}{3}$
4) $\frac{\sqrt{3}}{12}$
Solution:
$\begin{aligned} & \tan ^{-1}\left\{\frac{\sqrt{1+x^2}-1}{x}\right\} \\ & \text { Let } x=\tan \theta \\ & \tan ^{-1}\left\{\frac{\sqrt{1+\tan ^2 \theta}-1}{\tan \theta}\right\}=\frac{\theta}{2}=\frac{\tan ^{-1} x}{2} \\ & \tan ^{-1}\left\{\frac{2 x \sqrt{1-x^2}}{1-2 x^2}\right\} \quad \text { let } x=\sin \alpha \\ & =\tan ^{-1}\left\{\frac{2 \sin \alpha \sqrt{1-\sin ^2 \alpha}}{1-2 \sin ^2 \alpha}\right\} \\ & =2 \alpha=2 \sin ^{-1} x\end{aligned}$
$\begin{aligned} & \frac{d y}{d x}=\frac{\frac{1}{2}+\frac{1}{1+x^2}}{2 \times \frac{1}{\sqrt{1-x^2}}} \\ & =\frac{1}{4} \frac{\sqrt{1-x^2}}{1+x^2} \\ & x=\frac{1}{2} \\ & \text { at } \\ & \frac{1}{4} \times \frac{\sqrt{1-\frac{1}{4}}}{1+\frac{1}{4}}=\frac{\frac{\sqrt{3}}{2}}{5}=\frac{\sqrt{3}}{10}\end{aligned}$
Hence, the answer is the option 2.
Example 2: If $y(x)=\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right), x \in\left(\frac{\pi}{2}, \pi\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=\frac{5 \pi}{6}$ is :
[JEE Main 2021]
1) $-\frac{1}{2}$
2) $-1$
3) $0$
4) $\frac{1}{2}$
Solution:
$\begin{aligned} x & \in\left(\frac{\pi}{4}, \pi\right) \\ \Rightarrow & \frac{x}{2} \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right) \\ y & =\left(\frac{\sqrt{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^2}+\sqrt{\left(\sin \frac{x}{2}-\cos \frac{x}{2}\right)^2}}{\sqrt{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^2}-\sqrt{\left(\sin \frac{x}{2}-\cos \frac{x}{2}\right)^2}}\right) \\ & =\cot ^{-1}\left(\frac{2 \sin \frac{x}{2}}{2 \cos \frac{x}{2}}\right)=\cot ^{-1} \tan \frac{x}{2} \\ & =\frac{\pi}{2}-\tan ^{-1} \tan \frac{x}{2}=\frac{\pi}{2}-\frac{x}{2} \\ \frac{d y}{d x} & =\frac{-1}{2}\end{aligned}$
Hence, the answer is the option 1.
Example 3: If $x=2^{\sin ^{-1} t}$ and $y=2^{\cos ^{-1} t}(|t| \leq 1)$, then $\frac{d y}{d x}$ is equal to
1) $y / x$
2) $x / y$
3) $-y / x$
4) $1$
Solution:
$
\begin{aligned}
& x=2^{\sin ^{-1} t} \\
& \text { So } \frac{d x}{d t}=2^{\sin ^{-1} t} \cdot \ln (2) \cdot \frac{1}{\sqrt{1-x^2}} \\
& y=2^{\cos ^{-1} t} \\
& \text { So } \frac{d y}{d t}=2^{\cos ^{-1} t} \cdot \ln (2) \cdot \frac{-1}{\sqrt{1-x^2}} \\
& \therefore \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2^{\cos ^{-1} t} \cdot \ln (2) \cdot \frac{-1}{\sqrt{1-x^2}}}{2^{\sin -1} t \cdot \ln (2) \cdot \frac{1}{\sqrt{1-x^2}}}=\frac{-2^{\cos ^{-1} t}}{2^{\sin ^{-1} t}}=-\frac{y}{x}
\end{aligned}
$
Example 4: Let $f(x)=\sec ^{-1}\left(1+x^2\right)$, then $\mathrm{f}(\mathrm{x})$ equals
1) $\frac{2 x}{\left(x^2+1\right) \sqrt{x^4+2 x^2}}$
2) $\frac{2 x}{\left(x^2+1\right) \sqrt{x^2+2}}$
3) $\frac{1}{\left(x^2+1\right) \sqrt{x^4+2 x^2}}$
4) $\frac{x}{\left(x^2+1\right) \sqrt{x^4+2 x^2}}$
Solution:
Let $\left(1+x^2\right)=u$
So $y=\sec ^{-1}(u)$
Using Chain Rule
$\begin{aligned} & \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \\ & \frac{d y}{d x}=\frac{d\left(\sec ^{-1}(u)\right)}{d u} \cdot \frac{d\left(1+x^2\right)}{d x} \\ & \frac{d y}{d x}=\frac{1}{|u| \sqrt{u^2-1}} \cdot 2 x \\ & \frac{d y}{d x}=\left(\frac{1}{\left(x^2+1\right) \sqrt{\left(x^2+1\right)^2-1}}\right) \cdot 2 x \\ & \frac{d y}{d x}=\frac{2 x}{\left(x^2+1\right) \sqrt{\left(x^4+2 x^2\right)}}\end{aligned}$
Hence, the answer is the option 1.
Example 5: $\frac{d}{d x}\left(\tan ^{-1} \sqrt{\frac{1-\cos (x)}{1+\cos (x)}}\right)$ is equal to (Given $x \in(0, \pi)$ )
1) $-\frac{1}{4}$
2) $\frac{1}{2}$
3) $-\frac{1}{2}$
4) $\frac{1}{4}$
Solution:
In many questions involving differentiation of complex inverse trigonometric functions, we need to first simplify the given expression using techniques learned in the concept 'Simplification using Substitution' in the chapter 'Inverse Trigonometric Functions'.
Let $y=\tan ^{-1} \sqrt{\frac{1-\cos (x)}{1+\cos (x)}}$ $=\tan ^{-1} \sqrt{\frac{2 \sin ^2 \frac{x}{2}}{2 \cos ^2 \frac{x}{2}}}$
$=\tan ^{-1}\left|\tan \frac{x}{2}\right|$ As $x \in(0, \pi)$, so $\frac{x}{2} \in\left(0, \frac{\pi}{2}\right)$, and $\tan \left(\frac{x}{2}\right)$ is positive
$
\begin{aligned}
& =\tan ^{-1} \tan \left(\frac{x}{2}\right)=\frac{x}{2} \\
& \therefore \frac{d y}{d x}=\frac{1}{2}
\end{aligned}
$
Hence, the answer is the option 2.
This section covers all key topics related to the differentiation of trigonometric functions such as $\sin x$, $\cos x$, $\tan x$, and their inverses. You’ll find a complete list of subtopics to strengthen your calculus foundation for exams like JEE and CBSE Class 12.
Differentiability and Existence of Derivative
Examining differentiability Using Graph of Function
Continuity of Composite Function
Here, you’ll get direct access to NCERT exemplar questions, step-by-step solutions, and detailed notes based on differentiation of trigonometric functions - ideal for board exam preparation and concept clarity.
NCERT Class 12 Maths Notes for Chapter 5 - Continuity and Differentiability
NCERT Class 12 Maths Solutions for Chapter 5 - Continuity and Differentiability
NCERT Class 12 Maths Exemplar Solutions for Chapter 5 - Continuity and Differentiability
This section includes chapter-wise and mixed-level practice questions covering standard derivatives, higher-order derivatives, and real-life applications of trigonometric differentiation to help you master problem-solving skills.
Differentiation Of Inverse Trigonometric Function - Practice Question MCQ
We have shared below the links to practice questions on the related topics of differentiation of inverse trigonometric functions:
Frequently Asked Questions (FAQs)
The derivative of a trigonometric function represents the rate at which the function changes with respect to its variable. For example, the derivative of $\sin x$ gives $\cos x$, which shows how the sine function varies as $x$ increases.
The most common trigonometric derivatives are:
$\frac{d}{dx}(\sin x) = \cos x$,
$\frac{d}{dx}(\cos x) = -\sin x$,
$\frac{d}{dx}(\tan x) = \sec^2 x$,
$\frac{d}{dx}(\cot x) = -\csc^2 x$,
$\frac{d}{dx}(\sec x) = \sec x \tan x$, and
$\frac{d}{dx}(\csc x) = -\csc x \cot x$.
The domain of $\sin ^{-1} \mathrm{x}$ is $[-1,1]$
The derivative of $\cos ^{-1} \mathrm{x}$ is $\frac{d}{d x}\left(\cos ^{-1}(\mathrm{x})\right)=-\frac{1}{\sqrt{1-\mathrm{x}^2}}$
The derivative of $\tan ^{-1} \mathrm{x}$ is $\frac{d}{d x}\left(\tan ^{-1}(\mathrm{x})\right)=\frac{1}{1+\mathrm{x}^2}$