Derivative of Inverse Trigonometric Functions

Derivative of Inverse Trigonometric Functions

Edited By Komal Miglani | Updated on Oct 15, 2024 10:46 AM IST

Differentiation of Inverse Trigonometric Functions is one of the important parts of Calculus, which applies to measuring the change in the function at a certain point. Mathematically, it forms a powerful tool by which slopes of functions are determined, the maximum and minimum of functions found, and problems on motion, growth, and decay, to name a few. These concepts of differentiation have been broadly applied in branches of mathematics, physics, engineering, economics, and biology.

This Story also Contains
  1. Inverse Trigonometric Fucntion
  2. Differentiation of Inverse Trigonometric Function
  3. Solved Examples Based on Rules of Inverse Trigonometric Function
  4. Summary
Derivative of Inverse Trigonometric Functions
Derivative of Inverse Trigonometric Functions

In this article, we will cover the concept of the Inverse Trigonometric Functions. This concept falls under the broader category of Calculus, which is a crucial Chapter in class 12 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination (JEE Main), and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Over the last five years of the JEE Main exam (from 2013 to 2023), a total of two questions have been asked on this concept, including one in 2020, and one in 2021.

Inverse Trigonometric Fucntion

Inverse trigonometric functions are also known as arcus functions, cyclometric functions, or anti-trigonometric functions. These functions are used to get an angle for a given trigonometric value. It refers to the change in the value of the trigonometric function at a certain rate. Inverse Trigonometric functions are the inverse functions $\sin, \cos, \tan,$ etc.

The domain of inverse functions are
1. $\sin ^{-1} x[-1,1]$
2. $\cos ^{-1} x[-1,1]$
3. $\tan ^{-1} \times R$
4. $\operatorname{cosec}^{-1} x(-\infty,-1] \cup[1, \infty)$
5. $\sec ^{-1} x(-\infty,-1] \cup[1, \infty)$
6. $\cot ^{-1} \times \mathrm{R}$

The Principal Value of function $f^{-1}(f (x))$ are

1. $\sin ^{-1}(\sin (\theta))=\theta \quad$ for all $\theta \in[-\pi / 2, \pi / 2]$
2. $\cos ^{-1}(\cos (\theta))=\theta \quad$ for all $\theta \in[0, \pi]$
3. $\tan ^{-1}(\tan (\theta))=\theta \quad$ for all $\theta \in(-\pi / 2, \pi / 2)$
4. $\cot ^{-1}(\cot (\theta))=\theta \quad$ for all $\theta \in(0, \pi)$
5. $\sec ^{-1}(\sec (\theta))=\theta \quad$ for all $\theta \in[0, \pi]-\{\pi / 2\}$
6. $\csc ^{-1}(\csc (\theta))=\theta \quad$ for all $\theta \in[-\pi / 2, \pi / 2]-\{0\}$

Differentiation of Inverse Trigonometric Function

The derivative of inverse trigonometric functions are,

1. $\frac{d}{d x}\left(\sin ^{-1}(\mathrm{x})\right)=\frac{1}{\sqrt{1-\mathrm{x}^2}}$

Let $\sin ^{-1} x=y$ where, $y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$
\begin{aligned}
& \therefore \quad \mathrm{x}=\sin \mathrm{y} \\
& \Rightarrow \quad \frac{d x}{d y}=\cos y=\sqrt{1-x^2} \quad(\because \cos y \geq 0 \quad \forall y \in[-\pi / 2, \pi / 2]) \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\sqrt{1-\mathrm{x}^2}}
\end{aligned}
$

2. $\frac{d}{d x}\left(\cos ^{-1}(\mathrm{x})\right)=-\frac{1}{\sqrt{1-\mathrm{x}^2}}$
3. $\frac{d}{d x}\left(\tan ^{-1}(\mathrm{x})\right)=\frac{1}{1+\mathrm{x}^2}$

Let $\tan ^{-1} x=y$ where, $y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$
\begin{aligned}
\therefore x =\tan y \\
\Rightarrow \frac{d x}{d y} & =\sec ^2 y \\
\Rightarrow \frac{d x}{d y} & =1+\tan ^2 y \\
\Rightarrow \frac{d x}{d y} & =1+x^2 \\
\Rightarrow \frac{d y}{d x} & =\frac{1}{1+x^2}
\end{aligned}
$

4. $\frac{d}{d x}\left(\cot ^{-1}(\mathrm{x})\right)=-\frac{1}{1+\mathrm{x}^2}$

As

$
\cot ^{-1}(x)=\frac{\pi}{2}-\tan ^{-1}(x)
$


Differentiating both sides we get,

$
\frac{d\left(\cot ^{-1}(x)\right)}{d x}=-\frac{1}{1+x^2}
$
5. $\quad \frac{d}{d x}\left(\sec ^{-1}(\mathbf{x})\right)=\frac{1}{|\mathbf{x}| \sqrt{\mathbf{x}^2-1}}$
6. $\frac{d}{d x}\left(\csc ^{-1}(\mathbf{x})\right)=-\frac{1}{|\mathbf{x}| \sqrt{\mathbf{x}^2-1}}$

Recommended Video Based on Differentiation of Inverse Trigonometric Function


Solved Examples Based on Rules of Inverse Trigonometric Function

Example 1: The derivative of $\tan ^{-1}\left\{\frac{\sqrt{1+x^2}-1}{x}\right\}$ with respect to $\tan ^{-1}\left\{\frac{2 x \sqrt{1-x^2}-1}{1-2 x^2}\right\}$ at $x=\frac{1}{2}$ is:
[JEE Main 2020]
1) $\frac{2 \sqrt{3}}{5}$
2) $\frac{\sqrt{3}}{10}$
3) $\frac{2 \sqrt{3}}{3}$
4) $\frac{\sqrt{3}}{12}$

Solution:

$\begin{aligned} & \tan ^{-1}\left\{\frac{\sqrt{1+x^2}-1}{x}\right\} \\ & \text { Let } x=\tan \theta \\ & \tan ^{-1}\left\{\frac{\sqrt{1+\tan ^2 \theta}-1}{\tan \theta}\right\}=\frac{\theta}{2}=\frac{\tan ^{-1} x}{2} \\ & \tan ^{-1}\left\{\frac{2 x \sqrt{1-x^2}}{1-2 x^2}\right\} \quad \text { let } x=\sin \alpha \\ & =\tan ^{-1}\left\{\frac{2 \sin \alpha \sqrt{1-\sin ^2 \alpha}}{1-2 \sin ^2 \alpha}\right\} \\ & =2 \alpha=2 \sin ^{-1} x\end{aligned}$

$\begin{aligned} & \frac{d y}{d x}=\frac{\frac{1}{2}+\frac{1}{1+x^2}}{2 \times \frac{1}{\sqrt{1-x^2}}} \\ & =\frac{1}{4} \frac{\sqrt{1-x^2}}{1+x^2} \\ & x=\frac{1}{2} \\ & \text { at } \\ & \frac{1}{4} \times \frac{\sqrt{1-\frac{1}{4}}}{1+\frac{1}{4}}=\frac{\frac{\sqrt{3}}{2}}{5}=\frac{\sqrt{3}}{10}\end{aligned}$

Hence, the answer is the option 2.

Example 2: If $y(x)=\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right), x \in\left(\frac{\pi}{2}, \pi\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=\frac{5 \pi}{6}$ is :
[JEE Main 2021]
1) $-\frac{1}{2}$
2) $-1$
3) $0$
4) $\frac{1}{2}$

Solution:

$\begin{aligned} x & \in\left(\frac{\pi}{4}, \pi\right) \\ \Rightarrow & \frac{x}{2} \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right) \\ y & =\left(\frac{\sqrt{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^2}+\sqrt{\left(\sin \frac{x}{2}-\cos \frac{x}{2}\right)^2}}{\sqrt{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^2}-\sqrt{\left(\sin \frac{x}{2}-\cos \frac{x}{2}\right)^2}}\right) \\ & =\cot ^{-1}\left(\frac{2 \sin \frac{x}{2}}{2 \cos \frac{x}{2}}\right)=\cot ^{-1} \tan \frac{x}{2} \\ & =\frac{\pi}{2}-\tan ^{-1} \tan \frac{x}{2}=\frac{\pi}{2}-\frac{x}{2} \\ \frac{d y}{d x} & =\frac{-1}{2}\end{aligned}$

Hence, the answer is the option 1.

Example 3: If $x=2^{\sin ^{-1} t}$ and $y=2^{\cos ^{-1} t}(|t| \leq 1)$, then $\frac{d y}{d x}$ is equal to
1) $y / x$
2) $x / y$
3) $-y / x$
4) $1$

Solution:

$
\begin{aligned}
& x=2^{\sin ^{-1} t} \\
& \text { So } \frac{d x}{d t}=2^{\sin ^{-1} t} \cdot \ln (2) \cdot \frac{1}{\sqrt{1-x^2}} \\
& y=2^{\cos ^{-1} t} \\
& \text { So } \frac{d y}{d t}=2^{\cos ^{-1} t} \cdot \ln (2) \cdot \frac{-1}{\sqrt{1-x^2}} \\
& \therefore \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2^{\cos ^{-1} t} \cdot \ln (2) \cdot \frac{-1}{\sqrt{1-x^2}}}{2^{\sin -1} t \cdot \ln (2) \cdot \frac{1}{\sqrt{1-x^2}}}=\frac{-2^{\cos ^{-1} t}}{2^{\sin ^{-1} t}}=-\frac{y}{x}
\end{aligned}
$

Example 4: Let $f(x)=\sec ^{-1}\left(1+x^2\right)$, then $\mathrm{f}(\mathrm{x})$ equals
1) $\frac{2 x}{\left(x^2+1\right) \sqrt{x^4+2 x^2}}$
2) $\frac{2 x}{\left(x^2+1\right) \sqrt{x^2+2}}$
3) $\frac{1}{\left(x^2+1\right) \sqrt{x^4+2 x^2}}$
4) $\frac{x}{\left(x^2+1\right) \sqrt{x^4+2 x^2}}$

Solution:
Let $\left(1+x^2\right)=u$
So $y=\sec ^{-1}(u)$

Using Chain Rule

$\begin{aligned} & \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \\ & \frac{d y}{d x}=\frac{d\left(\sec ^{-1}(u)\right)}{d u} \cdot \frac{d\left(1+x^2\right)}{d x} \\ & \frac{d y}{d x}=\frac{1}{|u| \sqrt{u^2-1}} \cdot 2 x \\ & \frac{d y}{d x}=\left(\frac{1}{\left(x^2+1\right) \sqrt{\left(x^2+1\right)^2-1}}\right) \cdot 2 x \\ & \frac{d y}{d x}=\frac{2 x}{\left(x^2+1\right) \sqrt{\left(x^4+2 x^2\right)}}\end{aligned}$

Hence, the answer is the option 1.

Example 5: $\frac{d}{d x}\left(\tan ^{-1} \sqrt{\frac{1-\cos (x)}{1+\cos (x)}}\right)$ is equal to (Given $x \in(0, \pi)$ )
1) $-\frac{1}{4}$
2) $\frac{1}{2}$
3) $-\frac{1}{2}$
4) $\frac{1}{4}$

Solution:

In many questions involving differentiation of complex inverse trigonometric functions, we need to first simplify the given expression using techniques learned in the concept 'Simplification using Substitution' in the chapter 'Inverse Trigonometric Functions'.

Let $y=\tan ^{-1} \sqrt{\frac{1-\cos (x)}{1+\cos (x)}}$ $=\tan ^{-1} \sqrt{\frac{2 \sin ^2 \frac{x}{2}}{2 \cos ^2 \frac{x}{2}}}$
$=\tan ^{-1}\left|\tan \frac{x}{2}\right|$ As $x \in(0, \pi)$, so $\frac{x}{2} \in\left(0, \frac{\pi}{2}\right)$, and $\tan \left(\frac{x}{2}\right)$ is positive

$
\begin{aligned}
& =\tan ^{-1} \tan \left(\frac{x}{2}\right)=\frac{x}{2} \\
& \therefore \frac{d y}{d x}=\frac{1}{2}
\end{aligned}
$

Hence, the answer is the option 2.

Summary

Inverse trigonometric function is an important part of calculus. Derivative of Inverse Trigonometric functions is the rate of change in the inverse trigonometric functions concerning independent variables. It provides a deeper understanding of mathematical ideas paramount for latest developments in many scientific and engineering disciplines.


Frequently Asked Questions (FAQs)

1. What are Inverse Trigonometric Functions?

These functions are the inverse of trigonometric functions and are used to find an angle for the given trigonometric value. 

2. How to differentiate Inverse Trigonometric Functions?

Inverse trigonometric functions can be differentiated using the specific formulas mentioned above.

3. What is the domain of $\sin ^{-1} x$ ?

The domain of $\sin ^{-1} \mathrm{x}$ is $[-1,1]$

4. What is the Derivative of $\cos ^{-1} x$ ?

The derivative of $\cos ^{-1} \mathrm{x}$ is $\frac{d}{d x}\left(\cos ^{-1}(\mathrm{x})\right)=-\frac{1}{\sqrt{1-\mathrm{x}^2}}$

5. What is the formula for differentiation of tan inverse?

The derivative of $\tan ^{-1} \mathrm{x}$ is $\frac{d}{d x}\left(\tan ^{-1}(\mathrm{x})\right)=\frac{1}{1+\mathrm{x}^2}$

Articles

Get answers from students and experts
Back to top