A hyperbola is a conic section with a set of points in a plane such that the distance from the fixed points are constant. The tangent of the hyperbola is a straight line touching the hyperbola at only one point without passing through it. This concept of tangent is used in director circles. we use the director circle to determine important properties of the hyperbola.
JEE Main: Study Materials | High Scoring Topics | Preparation Guide
JEE Main: Syllabus | Sample Papers | Mock Tests | PYQs
This article is about the director circle of the hyperbola wihich falls under the topic Two Dimensional Analytical Geometry.
The director circle of a hyperbola is the locus of the point of intersection of the perpendicular tangents of the hyperbola.
The equation of the director circle of the hyperbola with centre as origin
When the centre of the hyperbola is not at the origin but at
where
Case 1: For
Case 2: For
Case 3: For
Equation of tangent of the hyperbola
it passes through the point
This is a quadratic equation in m, slope of two tangents are
Example 1: Find the equation of the diameter of hyperbola
Solution:
Let the equation of the diameter, which is conjugated to
As we know two diameters
Hence, the equation of the conjugate diameters is
Example 2: If radii of director circles of
Solution:
Eccentricity -
For the ellipse
Equation of director circles of ellipse and hyperbola are respectively.
Hence, the answer is
Example 3: If
Solution:
and,
The two curves will be cut at right angles if
Substituting these values in
Hence, the answer is
Example 4: If the line
Solution:
The extremities of a pair of conjugate diameters of
According to the question, since the extremities of a pair of conjugate diameters lie on
Then from (i) al sec
And from (ii), al
Hence, the answer is
The director circle is the locus of the point of intersection of the perpendicular tangents of the hyperbola.
The equation of director circle for hyperbola
If
For
For
15 Feb'25 10:03 AM
15 Feb'25 12:45 AM
12 Feb'25 01:14 AM
12 Feb'25 01:14 AM
12 Feb'25 01:10 AM
12 Feb'25 01:08 AM
12 Feb'25 01:06 AM
12 Feb'25 01:05 AM
12 Feb'25 01:02 AM
12 Feb'25 01:01 AM