Elementary Row Operations

Elementary Row Operations

Komal MiglaniUpdated on 02 Jul 2025, 06:34 PM IST

An elementary matrix is a matrix that differs from the identity matrix by one single elementary row operation. Elementary row operations are used in Gaussian Elimination to reduce a matrix to row echelon form. In real life, we can use elementary row operations to quickly solve a system of equations, determine a matrix's rank, and more. The inverse of a matrix A can also be found using the basic row operations.

This Story also Contains

  1. Elementary row transformation
  2. Elementary Row Operations
  3. Algorithm for finding the inverse of a singular 3 x 3 Matrix by Elementary Row Transformations
  4. Elementary Column Transformation
  5. Solved Examples Based On Elementary Row Transformation
Elementary Row Operations
Elementary Row Operations

In this article, we will cover the concept of Elementary row transformation. This category falls under the broader category of Matrices, which is a crucial Chapter in class 12 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination(JEE Main) and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Over the last ten years of the JEE Main Exam (from 2013 to 2023), a total of 4 questions have been asked on this concept, including one in 2020, one in 2021, and three in 2022.

Elementary row transformation

In Elementary row transformation, the rows of the matrix are the only ones that are altered. The columns remain unchanged. A set of guidelines is followed when performing these row operations to ensure that the transformed matrix is identical to the original matrix.

Elementary Row Operations

Row transformation: The following three types of operation (transformation) on the rows of a given matrix are known as elementary row operation (transformation).
i) Interchange of $\mathrm{i}^{\text {th }}$ row with $\mathrm{j}^{\text {th }}$ row, this operation is denoted by
$
R_{\mathrm{i}} \leftrightarrow R_{\mathrm{j}}
$

During this operation, all the elements of $\mathrm{i}^{\text {th }}$ row get replaced by all the elements of $\mathrm{j}^{\text {th }}$ row.
ii) The multiplication of $\mathrm{i}^{\text {th }}$ row by a constant $\mathrm{k}(\mathrm{k} \neq 0)$ is denoted by
$
\mathrm{R}_{\mathrm{i}} \leftrightarrow \mathrm{kR}_{\mathrm{i}}
$

During this operation, all the elements $\mathrm{i}^{\text {th }}$ row are replaced by multiplication of elements $\mathrm{i}^{\text {th }}$ row by the constant $\mathrm{k}$.
iii) Adding of $\mathrm{i}^{\text {th }}$ row elements with of $\mathrm{j}^{\text {th }}$ row multiplied by constant $k(k \neq 0)$ is denoted by
$
R_i \leftrightarrow R_i+k R_j
$

During this operation, $\mathrm{i}^{\text {th }}$ row elements are replaced by adding the previous value of the $\mathrm{i}^{\text {th }}$ row and elements of $j^{\text {th }}$ row multiplied by a constant ( $k$ ).

In the same way, three-column operations can also be defined.

Steps for finding the inverse of a matrix of order 2 by elementary row operations

Step i: Write $A=I_n A$
Step II: Perform a sequence of elementary row operations successively on A on the LHS and the prefactor $I_n$ on the RHS till we obtain the result $I_n=B A$
Step III: Write $A^{-1}=B$

Algorithm for finding the inverse of a singular 3 x 3 Matrix by Elementary Row Transformations

  1. Introduce unity at the intersection of the first row and first column either by interchanging two rows or by adding a constant multiple of elements of some other row to the first row.
  2. After introducing unity at (1,1) place introduce zeros at all other places in the first column.
  3. Introduce unity at the intersection of the 2nd row and 2nd column with the help of the 2nd and 3rd row.
  4. Introduce zeros at all other places in the second column except at the intersection of 2nd row and 2nd column.
  5. Introduce unity at the intersection of 3rd row and third column.
  6. Finally, introduce zeros at all other places in the third column except at the intersection of third row and third column.
JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-book

Elementary Column Transformation

In the Elementary column transformation, the matrices' columns are the only ones that are altered. The row remains unchanged. A predetermined set of guidelines is followed when performing these column operations to ensure that the transformed matrix is identical to the original matrix.

Recommended Video Based on Elementary Row Operations:

Solved Examples Based On Elementary Row Transformation

Example 1: Find the inverse of matrix A, if matrix A= $\left[\begin{array}{cc}a & b \\ c & \left(\frac{1+b c}{a}\right)\end{array}\right]$

Solution:

Use $\mathrm{A A^{-1}}=I$

$
\begin{aligned}
& {\left[\begin{array}{lc}
a & b \\
c & \left(\frac{1+b c}{a}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \mathrm{A}} \\
& \mathrm{R}_1 \rightarrow \frac{1}{{a}} \mathrm{R}_1 \\
& {\left[\begin{array}{lc}
1 & \frac{b}{a} \\
c & \left(\frac{1+b c}{a}\right)
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{a} & 0 \\
0 & 1
\end{array}\right] \mathrm{A}} \\
& \mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{cR_{1 }} \\
& {\left[\begin{array}{ll}
1 & \frac{b}{q} \\
0 & \frac{1}{a}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{a} & 0 \\
\frac{c}{a} & 1
\end{array}\right] \mathrm{A}} \\
& \mathrm{R}_2 \rightarrow \mathrm{aR}_2 \\
& {\left[\begin{array}{ll}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{a} & 0 \\
-c & a
\end{array}\right] \mathrm{A}} \\
& \mathrm{R}_2 \rightarrow \mathrm{R}_1-\frac{\mathrm{b}}{\mathrm{a}} \mathrm{R}_2 \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\frac{1+b c}{a} & -b \\
-c & a
\end{array}\right] \mathrm{A}} \\
& \mathrm{A}^{-1}=\left[\begin{array}{cc}
\frac{1+b c}{a} & -b \\
-c & a
\end{array}\right]
\end{aligned}
$

Example 2: Find the inverse of a matrix $
\mathrm{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
3 & 1 & 1
\end{array}\right]
$

Solution:
First write, $\mathrm{A}=\mathrm{IA}$
$
\Rightarrow\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
3 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A}
$

Apply, $\mathrm{R}_3 \rightarrow \mathrm{R}_3-3 \mathrm{R}_1$
$
\Rightarrow\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & -5 & -8
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right] \mathrm{A}
$

Apply, $\mathrm{R}_1 \rightarrow \mathrm{R}_1-2 \mathrm{R}_2$
$
\Rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & -5 & -8
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right] \mathrm{A}
$

Apply, $\mathrm{R}_3 \rightarrow \mathrm{R}_3+5 \mathrm{R}_2$
$
\Rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
-3 & 5 & 1
\end{array}\right] \mathrm{A}
$

$
\begin{aligned}
& \text { Apply, } \mathrm{R}_3 \rightarrow \frac{1}{2} \mathrm{R}_3 \\
& \Rightarrow\left[\begin{array}{lll}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
\frac{-3}{2} & \frac{5}{2} & \frac{1}{2}
\end{array}\right] \mathrm{A} \\
& \text { Apply, } \mathrm{R}_1 \rightarrow \mathrm{R}_1+\mathrm{R}_3 \\
& \Rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & 0 \\
\frac{-3}{2} & \frac{5}{2} & \frac{1}{2}
\end{array}\right] \mathrm{A} \\
& \text { Apply, } \mathrm{R}_2 \rightarrow \mathrm{R}_2-2 \mathrm{R}_3 \\
& \Rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
3 & -4 & -1 \\
\frac{-3}{2} & \frac{5}{2} & \frac{1}{2}
\end{array}\right] \mathrm{A}
\end{aligned}
$

Hence, $
\mathrm{A}^{-1}=\left[\begin{array}{ccc}
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
3 & -4 & -1 \\
\frac{-3}{2} & \frac{5}{2} & \frac{1}{2}
\end{array}\right]
$

Example 3 Find the inverse of the matrix $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 3 & 2 & 5 \\ 1 & 2 & 3\end{array}\right]$
Solution
Use $A A^{-1}=I$
$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 0 \\
3 & 2 & 5 \\
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A} \\
& R_1 \leftrightarrow R_2 \\
& {\left[\begin{array}{lll}
3 & 2 & 5 \\
1 & 2 & 0 \\
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] A}
\end{aligned}
$
$
\begin{aligned}
& R_2 \rightarrow R_2-\frac{1}{3} \cdot R_1 \\
& {\left[\begin{array}{ccc}
3 & 2 & 5 \\
0 & \frac{4}{3} & -\frac{5}{3} \\
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -\frac{1}{3} & 0 \\
0 & 0 & 1
\end{array}\right] A} \\
& R_3 \rightarrow R_3-\frac{1}{3} \cdot R_1 \\
& {\left[\begin{array}{ccc}
3 & 2 & 5 \\
0 & \frac{4}{3} & -\frac{5}{3} \\
0 & \frac{4}{3} & \frac{4}{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -\frac{1}{3} & 0 \\
0 & -\frac{1}{3} & 1
\end{array}\right] A} \\
& R_3 \rightarrow R_3-1 \cdot R_2 \\
&
\end{aligned}
$

$\begin{aligned} & {\left[\begin{array}{ccc}3 & 2 & 5 \\ 0 & \frac{4}{3} & -\frac{5}{3} \\ 0 & 0 & 3\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & -\frac{1}{3} & 0 \\ -1 & 0 & 1\end{array}\right] A} \\ & R_3 \rightarrow \frac{1}{3} \cdot R_3 \\ & {\left[\begin{array}{ccc}3 & 2 & 5 \\ 0 & \frac{4}{3} & -\frac{5}{3} \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & -\frac{1}{3} & 0 \\ -\frac{1}{3} & 0 & \frac{1}{3}\end{array}\right] A} \\ & R_2 \rightarrow R_2+\frac{5}{3} \cdot R_3 \\ & {\left[\begin{array}{lll}3 & 2 & 5 \\ 0 & \frac{4}{3} & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ \frac{4}{9} & -\frac{1}{3} & \frac{5}{9} \\ -\frac{1}{3} & 0 & \frac{1}{3}\end{array}\right] A} \\ & R_1 \rightarrow R_1-5 \cdot R_3 \\ & {\left[\begin{array}{lll}3 & 2 & 0 \\ 0 & \frac{4}{3} & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\frac{5}{3} & 1 & -\frac{5}{3} \\ \frac{4}{9} & -\frac{1}{3} & \frac{5}{9} \\ -\frac{1}{3} & 0 & \frac{1}{3}\end{array}\right] A} \\ & \end{aligned}$

$
\begin{aligned}
& R_2 \rightarrow \frac{3}{4} \cdot R_2 \\
& {\left[\begin{array}{lll}
3 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{5}{3} & 1 & -\frac{5}{3} \\
\frac{1}{3} & -\frac{1}{4} & \frac{5}{12} \\
-\frac{1}{3} & 0 & \frac{1}{3}
\end{array}\right] A} \\
& R_1 \rightarrow R_1-2 \cdot R_2 \\
& {\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \frac{3}{2} & -\frac{5}{2} \\
\frac{1}{3} & -\frac{1}{4} & \frac{5}{12} \\
-\frac{1}{3} & 0 & \frac{1}{3}
\end{array}\right] A} \\
& R_1 \rightarrow \frac{1}{3} \cdot R_1 \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{3} & \frac{1}{2} & -\frac{5}{6} \\
\frac{1}{3} & -\frac{1}{4} & \frac{5}{12} \\
-\frac{1}{3} & 0 & \frac{1}{3}
\end{array}\right] A} \\
& \text{Hence}, A^{-1}=\left[\begin{array}{ccc}
\frac{1}{3} & \frac{1}{2} & -\frac{5}{6} \\
\frac{1}{3} & -\frac{1}{4} & \frac{5}{12} \\
-\frac{1}{3} & 0 & \frac{1}{3}
\end{array}\right] \\
&
\end{aligned}
$

Example 4: Find the inverse matrix of $
A=\left[\begin{array}{rrr}
1 & 1 & 2 \\
2 & 3 & 5 \\
-1 & 0 & 2
\end{array}\right]
$

Solution:
Use $A A^{-1}=I$
$
\left[\begin{array}{rrr}
1 & 1 & 2 \\
2 & 3 & 5 \\
-1 & 0 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A
$

Swap matrix rows: $R_1 \leftrightarrow R_2$
$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 3 & 5 \\
1 & 1 & 2 \\
-1 & 0 & 2
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] A} \\
& R_2 \leftarrow R_2-\frac{1}{2} \cdot R_1 \\
& {\left[\begin{array}{ccc}
2 & 3 & 5 \\
0 & -\frac{1}{2} & -\frac{1}{2} \\
-1 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right] A}
\end{aligned}
$

$
\begin{gathered}
R_3 \leftarrow R_3+\frac{1}{2} \cdot R_1 \\
{\left[\begin{array}{ccc}
2 & 3 & 5 \\
0 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{3}{2} & \frac{9}{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -\frac{1}{2} & 0 \\
0 & \frac{1}{2} & 1
\end{array}\right]}
\end{gathered}
$

Swap matrix rows : $R_2 \leftrightarrow R_3$
$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 3 & 5 \\
0 & \frac{3}{2} & \frac{9}{2} \\
0 & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{1}{2} & 1 \\
1 & -\frac{1}{2} & 0
\end{array}\right] A} \\
& R_3 \rightarrow R_3+\frac{1}{3} \cdot R_2 \\
& {\left[\begin{array}{lll}
2 & 3 & 5 \\
0 & \frac{3}{2} & \frac{9}{2} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{1}{2} & 1 \\
1 & -\frac{1}{3} & \frac{1}{3}
\end{array}\right] A} \\
& R_2 \rightarrow R_2-\frac{9}{2} \cdot R_3 \\
& {\left[\begin{array}{lll}
2 & 3 & 5 \\
0 & \frac{3}{2} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\frac{9}{2} & 2 & -\frac{1}{2} \\
1 & -\frac{1}{3} & \frac{1}{3}
\end{array}\right] A} \\
& R_1 \rightarrow R_1-5 \cdot R_3 \\
&
\end{aligned}
$

$\begin{aligned} & {\left[\begin{array}{lll}2 & 3 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-5 & \frac{8}{3} & -\frac{5}{3} \\ -\frac{9}{2} & 2 & -\frac{1}{2} \\ 1 & -\frac{1}{3} & \frac{1}{3}\end{array}\right] A} \\ & R_2 \rightarrow \frac{2}{3} \cdot R_2 \\ & {\left[\begin{array}{lll}2 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-5 & \frac{8}{3} & -\frac{5}{3} \\ -3 & \frac{4}{3} & -\frac{1}{3} \\ 1 & -\frac{1}{3} & \frac{1}{3}\end{array}\right] A} \\ & R_1 \rightarrow R_1-3 \cdot R_2 \\ & {\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}4 & -\frac{4}{3} & -\frac{2}{3} \\ -3 & \frac{4}{3} & -\frac{1}{3} \\ 1 & -\frac{1}{3} & \frac{1}{3}\end{array}\right] A} \\ & \end{aligned}$

$
\begin{aligned}
& \qquad R_1 \rightarrow \frac{1}{2} \cdot R_1 \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & -\frac{2}{3} & -\frac{1}{3} \\
-3 & \frac{4}{3} & -\frac{1}{3} \\
1 & -\frac{1}{3} & \frac{1}{3}
\end{array}\right] A} \\
\end{aligned}
$

Hence, $
A^{-1}=\left[\begin{array}{ccc}
2 & -\frac{2}{3} & -\frac{1}{3} \\
-3 & \frac{4}{3} & -\frac{1}{3} \\
1 & -\frac{1}{3} & \frac{1}{3}
\end{array}\right]
$


Frequently Asked Questions (FAQs)

Q: How do elementary row operations relate to the concept of matrix similarity?
A:
Elementary row operations do not preserve matrix similarity. Similar matrices share properties like eigenvalues and determinants, but row operations can change these. This distinction is important in understanding the limitations of row operations in certain matrix analyses, particularly those involving eigenvalue problems.
Q: What is the significance of partial pivoting in row reduction algorithms?
A:
Partial pivoting involves selecting the largest absolute value in a column as the pivot during row reduction. This technique is crucial in numerical computations to minimize rounding errors and improve the stability of the algorithm, especially for matrices with widely varying element magnitudes.
Q: How do you use elementary row operations to find a basis for the row space of a matrix?
A:
To find a basis for the row space, use elementary row operations to reduce the matrix to row echelon form. The non-zero rows of this reduced matrix form a basis for the row space. This works because row operations preserve the row space while simplifying the matrix structure.
Q: What is the role of elementary row operations in solving matrix equations?
A:
In solving matrix equations like AX = B, elementary row operations are applied to the augmented matrix [A|B]. By reducing this to row echelon or reduced row echelon form, we can solve for X. This method extends the concept of solving linear systems to matrix-valued unknowns.
Q: How do elementary row operations relate to the concept of matrix equivalence?
A:
Two matrices are row equivalent if one can be obtained from the other through a sequence of elementary row operations. This equivalence is crucial because row equivalent matrices represent the same linear system and share many important properties, such as rank and solution sets.
Q: What is the connection between elementary row operations and Gaussian elimination?
A:
Gaussian elimination is essentially a systematic application of elementary row operations. It uses these operations in a specific order to transform a matrix into row echelon form, which is crucial for solving systems of linear equations and analyzing matrix properties.
Q: How do elementary row operations affect the nullity of a matrix?
A:
Elementary row operations do not change the nullity of a matrix. The nullity, which is the dimension of the null space, remains constant because row operations preserve the fundamental solution space of the homogeneous system Ax = 0.
Q: What is the significance of a zero row in row reduction?
A:
A zero row obtained through row reduction indicates linear dependence among the original equations in a system. In terms of matrix rank, each zero row reduces the rank by one. In solving systems, zero rows often correspond to redundant or trivially satisfied equations.
Q: What is the role of elementary row operations in computing matrix determinants?
A:
While elementary row operations can change the determinant value, they do so in predictable ways. This property is often used in determinant calculations: reduce the matrix to triangular form using row operations, keeping track of how these operations affect the determinant, then compute the product of diagonal elements.
Q: What is the significance of back-substitution in row reduction methods?
A:
Back-substitution is the final step in solving systems using row reduction. After obtaining row echelon form, you work backwards from the bottom row, substituting known values to find the remaining unknowns. This step is crucial for obtaining explicit solutions from the reduced matrix.