When you deposit money in a savings account, the amount grows over time due to compound interest. This growth is not linear but exponential, and the formula used to calculate it involves exponential limits. Similarly, when scientists measure the time it takes for a radioactive substance to decay or when engineers calculate the intensity of earthquakes using the Richter scale, they use logarithmic functions. To solve such real-life problems in mathematics, we rely on exponential and logarithmic limits, which help simplify complex expressions that appear in calculus. In this article, we will explore important limit formulas, standard results, and step-by-step examples related to exponential and logarithmic functions to strengthen your concepts and problem-solving skills.
This Story also Contains
The function which associates the number $a^x$ to each real number $x$ is called the exponential function and is denoted by $f(x) = a^x$.
In other words, a function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = a^x$, where $a > 0$ and $a \neq 1$, is called an exponential function.
The domain of an exponential function is $(-\infty, \infty)$ and the range is $(0, \infty)$ since $a^x$ always takes positive values.
Since $a > 0$ and $a \neq 1$, two cases arise:
Case I: When $a > 1$ (Exponential Growth)
As $x$ increases, $a^x$ also increases:
$f(x) = \begin{cases} < 1 & \text{for } x < 0 \\ 1 & \text{for } x = 0 \\ > 1 & \text{for } x > 0 \end{cases}$

Case II: When $0 < a < 1$ (Exponential Decay)
As $x$ increases, $a^x$ decreases, but $f(x) > 0$ for all $x \in \mathbb{R}$.
Limit of $a^x$ as $x \to 0$:
$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$
Proof using Taylor series expansion of $a^x$:
$\lim_{x \to 0} \frac{a^x - 1}{x} = \lim_{x \to 0} \frac{1 + \frac{x (\ln a)}{1!} + \frac{x^2 (\ln a)^2}{2!} + \cdots - 1}{x}$
$= \lim_{x \to 0} \left( \frac{\ln a}{1!} + \frac{x (\ln a)^2}{2!} + \cdots \right) = \ln a$
Special case for $e^x$:
$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
If $\lim_{x \to a} f(x) = 0$, then:
(a) $\lim_{x \to a} \frac{a^{f(x)} - 1}{f(x)} = \ln a$
(b) $\lim_{x \to a} \frac{e^{f(x)} - 1}{f(x)} = \ln e = 1$
To evaluate logarithmic limits, we use the following standard result:
$\lim_{x \to 0} \frac{\log_e(1+x)}{x} = 1$
Proof using Taylor series expansion of $\log_e(1+x)$:
$\lim_{x \to 0} \frac{\log_e(1+x)}{x} = \lim_{x \to 0} \frac{x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots}{x}$
$= \lim_{x \to 0} \left( 1 - \frac{x}{2} + \frac{x^2}{3} - \cdots \right) = 1$
General Result for Logarithmic Limits
If $\lim_{x \to a} f(x) = 0$, then:
$\lim_{x \to a} \frac{\log_e(1 + f(x))}{f(x)} = 1$
Here we summarize all key formulas and standard results for exponential and logarithmic limits, including $\lim_{x \to 0} \frac{a^x - 1}{x}$, $\lim_{x \to 0} \frac{\log_e(1+x)}{x}$, and general forms, serving as a quick reference for students.
| Function Type | Standard Limit | Result | Usage |
|---|---|---|---|
| Exponential | $\lim_{x \to 0} \frac{a^x - 1}{x}$ | $\ln a$ | $a > 0$, $a \neq 1$, commonly used in growth problems |
| Exponential | $\lim_{x \to 0} \frac{e^x - 1}{x}$ | $1$ | Special case for natural exponential function |
| Exponential | $\lim_{x \to a} \frac{a^{f(x)} - 1}{f(x)}$ | $\ln a$ | General form, if $\lim_{x \to a} f(x) = 0$ |
| Exponential | $\lim_{x \to a} \frac{e^{f(x)} - 1}{f(x)}$ | $1$ | General form for natural exponential |
| Logarithmic | $\lim_{x \to 0} \frac{\log_e(1+x)}{x}$ | $1$ | Basic log limit using Taylor series expansion |
| Logarithmic | $\lim_{x \to a} \frac{\log_e(1+f(x))}{f(x)}$ | $1$ | General log limit, if $\lim_{x \to a} f(x) = 0$ |
| Logarithmic | $\lim_{x \to 1} \frac{\log_e x}{x - 1}$ | $1$ | Important for derivatives of log functions |
Example 1: Let $f: R \rightarrow R \space {\text {satisfy the equation }}$ $f(x+y)=f(x) \cdot f(y)_{\text {of all }} x, y \in R_{\text {and }} f(x) \neq 0$ for any $x \in R$. If the function f is differentiable at $\mathrm{x}=0$ and $\mathrm{f}^{\mathrm{f}}(0)=3$, then $\lim\limits _{h \rightarrow 0} \frac{1}{h}(f(h)-1)$ is equal to $\qquad$ [JEE Main 2021]
1) $3$
2) $5$
3) $2$
4) None of these
Solution:
$
\begin{aligned}
& f(x+y)=f(x) \cdot f(y) \text { then } \\
& \Rightarrow \quad f(x)=a^x
\end{aligned}
$
$
\begin{aligned}
& \Rightarrow a=e^3 \\
& \therefore f(x)=\left(e^3\right)^x=e^{3 x}
\end{aligned}
$
Now, $\lim\limits _{h \rightarrow 0} \frac{f(h)-1}{h}=\lim\limits _{h \rightarrow 0}\left(\frac{e^{3 h}-1}{3 h} \times 3\right)=1 \times 3=3$
Hence, the answer is the $3 $
Example 2: If $\lim\limits _{x \rightarrow 0} \frac{a x-\left(e^{4 x}-1\right)}{a x\left(e^{4 x}-1\right)}$ exists and is equal to b, then the value of $a-2 b$ is $\qquad$ - [JEE Main 2021]
1) $5$
2) $4$
3) $3$
4) $2$
Solution:
$\begin{equation}
\begin{aligned}
&\lim\limits _{x \rightarrow 0} \frac{a x-\left(e^{4 x}-1\right)}{\operatorname{ax}\left(e^{4 x}-1\right)}\\
&\text { this is in } \frac{0}{0} \text { form }\\
&\begin{aligned}
& \lim\limits _{x \rightarrow 0} \frac{\left(a x-\left(e^{4 x}-1\right)\right) 4 x}{\operatorname{ax}\left(e^{4 x}-1\right) 4 x} \\
& =\lim\limits _{x \rightarrow 0} \frac{\mathrm{ax}-\left(e^{4 x}-1\right)}{a x \cdot 4 x} \quad\left(\text { Use } \lim\limits _{x \rightarrow 0} \frac{e^{4 x}-1}{4 x}=1\right)
\end{aligned}
\end{aligned}
\end{equation}$
Apply L'Hopital rule
$=\lim\limits _{x \rightarrow 0} \frac{a-4 e^{4 x}}{8 a x} \quad\left(\frac{a-4}{0} \text { form }\right)
$
for the limit to exist, a = 4
$
\begin{aligned}
& =\lim\limits _{x \rightarrow 0} \frac{4-4 e^{4 x}}{32 x} \\
& =\lim\limits _{x \rightarrow 0} \frac{1-\mathrm{e}^{4 \mathrm{x}}}{8 \mathrm{x}} \quad\left(\frac{0}{0}\right) \\
& =\lim\limits _{x \rightarrow 0} \frac{-\mathrm{e}^{4 x} \cdot 4}{8}=-\frac{1}{2} \\
& \Rightarrow \mathrm{b}=-\frac{1}{2} \\
& a-2 b=4-2\left(-\frac{1}{2}\right) \\
& =5
\end{aligned}
$
Hence, the answer is the option 1.
Example 3: Find the value of $\lim\limits _{x \rightarrow 0} \frac{x\left(e^{\left(\sqrt{1+x^2+x^4}-1 / x\right)}-1\right)}{\sqrt{1+x^2+x^4}-1}$ [JEE Main 2020]
1) is equal to $1$
2) is equal to $0$
3) doesn't exist
4) is equal to $\sqrt{e}$
Solution:
$\begin{aligned}
& \lim\limits _{x \rightarrow 0} \frac{\left(e^{\left(\sqrt{1+x^2+x^4}-1\right) / x}-1\right)}{\frac{\sqrt{1+x^2+x^4}-1}{x}} \\
& \lim\limits _{x \rightarrow 0} \frac{\sqrt{1+x^2+x^4}-1}{x} \quad\left(\frac{0}{0} \text { form }\right)
\end{aligned}
$
On applying L-Hopital rule, we get
$
\lim\limits _{x \rightarrow 0}\left(\frac{1\left(2 x+4 x^3\right)}{2 x \sqrt{1+x^2+x^4}}\right)=0
$
The limit is of the form $\lim\limits _{h \rightarrow 0} \frac{e^h-1}{h}$ It is equal to 1 .
Hence, the answer is the option 1 .
Example 4: If $\alpha, \beta$ are the distinct roots of $x^2+b x+c=0$, then $\lim\limits _{x \rightarrow \beta} \frac{e^{2\left(x^2+b x+c\right)}-1-2\left(x^2+b x+c\right)}{(x-\beta)^2}$ is equal to :
[JEE
Main 2021]
$
\begin{aligned}
& \text { 1) } 2\left(b^2+4 c\right) \\
& \text { 2) } b^2-4 c
\end{aligned}
$
3) $2\left(b^2-4 c\right)$
$
\text { 4) } b^2+4 c
$
Solution: $x^2+b x+c=(x-\alpha)(x-\beta)$
$
\begin{aligned}
& \lim\limits _{x \rightarrow \beta} \frac{e^{2(x-\alpha)(x-\beta)}-1-2(x-\alpha)(x-\beta)}{(x-\beta)^2} \text { Expanding } e^{2(x-\alpha)(x-\beta)} \\
& =\lim\limits _{x \rightarrow \beta} \frac{1+2(x-\alpha)(x-\beta)+\frac{(2(x-\alpha)(x-\beta))^2}{2!}+\cdots-1-2(x-\alpha)(x-\beta)}{(x-\beta)^2} \\
& =2(\alpha-\beta)^2 \\
& =2\left[(\alpha+\beta)^2-4 \alpha \beta\right]=2\left(b^2-4 c\right)
\end{aligned}
$
Hence, the answer is the option 3.
Example 5: Let k be a non - zero real number. If $ f(x)= \begin{cases}\frac{\left(e^x-1\right)^2}{\sin \left(\frac{x}{k}\right) \log \left(1+\frac{x}{4}\right)} & x \neq 0 \\ 12 & x=0 \text { is a continuous function, then }\end{cases}
$
the value of $k$ is :
[JEE Main 2015]
(1) $3$
2) $2$
3) $1$
4) $4$
Solution:
As we learned in
Evaluation of Exponential Limits -
$
\begin{aligned}
& \lim\limits _{x \rightarrow 0} \frac{e^x-1}{x}=1 \\
& \lim\limits _{x \rightarrow 0} \frac{a^x-1}{x}=\log _e a \\
& \lim\limits _{x \rightarrow 0} \frac{e^{K x}-1}{x} \neq 1 \\
& \therefore \quad \lim\limits _{x \rightarrow 0} \frac{e^{K x}-1}{x} \times \frac{K}{K} \\
& \therefore \quad K \lim\limits _{x \rightarrow 0} \frac{e^{K x}-1}{K x}=K \times 1=K
\end{aligned}
$
- wherein
$
\lim\limits _{x \rightarrow 0} \frac{e^x-1}{x}
$
$x$ must be same
$
\begin{aligned}
& f(x)= \begin{cases}\frac{\left(e^x-1\right)^2}{\sin \left(\frac{x}{k}\right) \log \left(1+\frac{x}{4}\right)} & x \neq 0 \\
12 & x=0\end{cases} \\
& \therefore \lim\limits _{x \rightarrow \frac{0^{+}}{0^{-}}} \frac{\left(e^x-1\right)^2}{\sin \left(\frac{x}{k}\right) \log \left(1+\frac{x}{4}\right)} \\
& \therefore \lim\limits _{x \rightarrow \frac{0^{+}}{0^{-}}} \frac{\frac{\left(e^x-1\right)^2}{x^2}}{\frac{\sin \left(\frac{n}{k}\right) \log \left(1+\frac{r}{4}\right)}{\frac{x}{k} \times k} \frac{x}{4} \times 4} \\
& \lim\limits _{x \rightarrow 0} \frac{\left(\frac{e^x-1}{x}\right)^2}{\left(\frac{\sin \frac{x}{k}}{\frac{x}{k}}\right) \frac{\log \left(1+\frac{x}{4}\right)}{\frac{x}{4}}} \times 4 k \\
& \therefore \frac{1 \times 4 k}{1 \times 1}=4 k \\
& \therefore 4 k=12 \\
& \therefore k=3
\end{aligned}
$
Hence, the answer is the option 1.
We have provided below the list of topics related to limits, so that you can learn them effectively and use them in problems in the exam.
Here, we provide a collection of NCERT notes, solutions, and exemplar problems specifically for Limits and Derivatives, making it easier for students to follow the official syllabus and strengthen core concepts.
NCERT Notes for Class 11 Maths Chapter 13 - Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 13 - Limits and Derivatives
NCERT Exempar Solutions for Class 11 Maths Chapter 13 - Limits and Derivatives
This section includes practice questions questions on exponential and logarithmic limits, designed to enhance problem-solving speed, accuracy, and exam readiness for Class 11, Class 12, and competitive exams.
Exponential And Logarithmic Limits - Practice Question MCQ
We have shared the links below to practice questions on the related topics to limits:
Frequently Asked Questions (FAQs)
The function that associates the number $a^x$ to each real number $x$ is called the exponential function.
The exponential function with Base $10$ is called the common exponential function.
A common exponential function is denoted by $e$.
Using the common exponential function as a base we obtain exponential function $e^x$ which is called as natural exponential function.
Natural exponential function is denoted as $e^x$.