In geometry, the concept of the "foot of perpendicular" refers to the point at which a perpendicular line drawn from a point meets another line, plane, or surface. The foot of the perpendicular is widely used in determining distances, angles, and projections, making it an essential tool for solving numerous geometric problems.
JEE Main 2025: Sample Papers | Mock Tests | PYQs | Study Plan 100 Days
JEE Main 2025: Maths Formulas | Study Materials
JEE Main 2025: Syllabus | Preparation Guide | High Scoring Topics
The foot of the perpendicular is defined as the point at which a perpendicular line from a given point intersects another geometric object, such as a line, plane, or surface. If P is a point not on the line L, and a perpendicular is dropped from P to L, then the point F where the perpendicular meets L is called the foot of the perpendicular from P to L.
Foot of perpendicular of $P\left(x_1, y_1\right)$ on the line $A B$ : $a x+b y+c=0$ is $M\left(x_2, y_2\right)$. then
$
\frac{\mathrm{x}_2-\mathrm{x}_1}{\mathbf{a}}=\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathrm{~b}}=-\frac{\left(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{c}\right)}{\left(\mathrm{a}^2+\mathrm{b}^2\right)}
$
Proof:
Let the coordinate of the foot of the perpendicular be $M\left(x_2, y_2\right)$. Then, point $M$ lies on the line $A B$.
$
\Rightarrow \quad \mathrm{ax}_2+\mathrm{by}_2+\mathrm{c}=0
$
and, $\quad \because \mathrm{PM} \perp \mathrm{AB}$
then, (slope of PM$)($ slope of AB$)=-1$
$
\begin{array}{ll}
\Rightarrow & \left(\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathrm{x}_2-\mathrm{x}_1}\right)\left(-\frac{\mathrm{a}}{\mathrm{b}}\right)=-1 \\
\text { or } & \frac{\mathrm{x}_2-\mathrm{x}_1}{\mathrm{a}}=\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathrm{~b}}
\end{array}
$
Using ratio and proportion
$
\begin{aligned}
& \frac{x_2-x_1}{a}=\frac{y_2-y_1}{b}=\frac{a\left(x_2-x_1\right)+b\left(y_2-y_1\right)}{a^2+b^2} \\
& \frac{x_2-x_1}{a}=\frac{y_2-y_1}{b}=-\frac{\left(a x_1+b y_1+c\right)}{a^2+b^2}
\end{aligned}
$
(Using (i))
Example 1: The coordinates of the foot of the perpendicular from the point $\mathbf{P}(\mathbf{2}, \mathbf{3})$ to the line $3 x-4 y-16=0$
1) $(5,-1)$
2) $(3,4)$
3) $(1,2)$
4) $(2,3)$
Solution
$
\frac{\mathrm{x}_2-\mathrm{x}_1}{\mathrm{a}}=\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathrm{~b}}=-\frac{\left(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{c}\right)}{\left(\mathrm{a}^2+\mathrm{b}^2\right)}
$
Applying this formula
$
\begin{aligned}
& \frac{x_2-2}{3}=\frac{y_2-3}{-4}=-\frac{(3(2)-4(3)-19)}{3^2+4^2} \\
& \frac{x_2-2}{3}=\frac{y_2-3}{-4}=1 \\
& \frac{x_2-2}{3}=1 \text { and } \frac{y_2-3}{-4}=1 \\
& x_2=5 \text { and } y_2=-1
\end{aligned}
$
Hence, the answer is the option 1.
Example 2: The coordinates of the foot of perpendicular from $(\mathrm{a}, 0)$ on the line $y=m x+\frac{a}{m}$ are
1) $\left(0, \frac{-a}{m}\right)$
2) $\left(\frac{a}{m}, 0\right)$
3) $\left(0, \frac{a}{m}\right)$
4) None
Solution
The line can be re-written as $m x-y+\frac{a}{m}=0$
Using the formula
$
\begin{aligned}
& \frac{\mathbf{x}_2-\mathbf{x}_{\mathbf{1}}}{\mathbf{a}}=\frac{\mathbf{y}_{\mathbf{2}}-\mathbf{y}_{\mathbf{1}}}{\mathbf{b}}=-\frac{\left(\mathbf{a x}_{\mathbf{1}}+\mathbf{b y}_{\mathbf{1}}+\mathbf{c}\right)}{\left(\mathbf{a}^2+\mathbf{b}^2\right)} \\
& \frac{x_2-a}{m}=\frac{y_2-0}{-1}=-\frac{m(a)-0+\frac{a}{m}}{m^2+1^2} \\
& \frac{x_2-a}{m}=\frac{y_2}{-1}=-\frac{a}{m} \\
& x_2=0 \text { and } y_2=\frac{a}{m}
\end{aligned}
$
Hence, the answer is the option 3.
Example 3: The foot of the perpendicular on the line $4 \mathrm{x}+\mathrm{y}=\mathrm{k}$ drawn from the origin is C . If the line cuts the x -axis and Y -axis at A and B respectively then BC : CA is
1) $1: 4$
2) $4: 1$
3) $1: 16$
4) $16: 1$
Solution
$\tan \left(180^{\circ}-\theta\right)=$ slope of $\mathrm{AB}=-4$
$\therefore \quad \tan \theta=4$
$\therefore \quad \frac{\mathrm{OC}}{\mathrm{AC}}=\tan \theta, \frac{\mathrm{OC}}{\mathrm{BC}}=\cot \theta$
$\Rightarrow \quad \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\tan \theta}{\cot \theta}=\tan ^2 \theta=16$
Example 4: The foot of the perpendicular on the line $x+3 y=\lambda$ drawn from the origin is C. If the line cuts the $x$-axis a $y$-axis at A and B respectively then $\mathrm{BC}: \mathrm{CA}$ is
1) $1: 3$
2) $3: 1$
3) $1: 9$
4) $9: 1$
Solution
$\tan \left(180^{\circ}-\theta\right)=$ slope of $\mathrm{AB}=-1 / 3$
$\therefore \quad \tan \theta=1 / 3$
$\therefore \quad \frac{\mathrm{OC}}{\mathrm{AC}}=\tan \theta, \frac{\mathrm{OC}}{\mathrm{BC}}=\cot \theta$
$\Rightarrow \quad \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\tan \theta}{\cot \theta}=\tan ^2 \theta=1 / 9$
Example 5: The middle point of the line segment joining $(3,-1)$ and $(1,1)$ is shifted by two units (in the sense of increasing $y$ ) perpendicular to the line segment. Find the co-ordinates of the point in the new position.
1) $(4, \sqrt{2})$
2) $(2+\sqrt{2}, \sqrt{2})$
3) $(2+\sqrt{2}, 2)$
4) $(2-\sqrt{2}, 2)$
Solution
Let $P$ be the middle point of the line segment joining
$\mathrm{A}(3,-2)$ and $\mathrm{B}(1,1)$
Then
$
\mathrm{P}=\left(\frac{3+1}{2}, \frac{-1+1}{2}\right)=(2,0)
$
Let $P$ be shifted to $Q$ where $P Q=2$ and $y$ co-ordinate of $Q$ is greater than $P$
Now slope of $A B=-1$
$\therefore$ slope of $\mathrm{PQ}=1$
Co-ordinates of Q by distance formula $=(2 \pm 2 \cos \theta, 0 \pm 2 \sin \theta)$ where $\tan \theta=1$
$
=\left(2 \pm 2 \cdot \frac{1}{\sqrt{2}}, \quad 0 \pm 2 \cdot \frac{1}{\sqrt{2}}\right)=(2 \pm \sqrt{2}, \pm \sqrt{2})
$
as $y$ co-ordinates of $Q$ is greater than that of $P$.
Hence, $\mathrm{Q}=(2+\sqrt{2}, \sqrt{2})$ is the required point.
The foot of the perpendicular is a fundamental concept in geometry, playing a crucial role in various mathematical and practical applications. It provides a method for determining the shortest distance from a point to a line or plane, finding projections, and solving optimization problems.
12 Oct'24 01:07 PM
07 Oct'24 10:47 AM
05 Oct'24 05:11 PM
05 Oct'24 05:08 PM
05 Oct'24 05:06 PM
05 Oct'24 05:02 PM
05 Oct'24 04:58 PM
05 Oct'24 04:52 PM
05 Oct'24 04:48 PM
05 Oct'24 04:45 PM