General Solution of Trigonometric Equations

General Solution of Trigonometric Equations

Edited By Komal Miglani | Updated on Oct 12, 2024 12:14 PM IST

A trigonometric equation is any equation that contains trigonometric functions. We have learned about trigonometric identities, which are satisfied for every value of the involved angles whereas, trigonometric equations are satisfied only for some values (finite or infinite in number) of the angles. In real life, we use trigonometric equations for making roof inclination, installing ceramic tiles, and building and navigating directions.

This Story also Contains
  1. Trigonometric Equations
  2. Solution of Trigonometric Equation
  3. General Solution of some Standard Equations
  4. Important Points to remember while solving trigonometric equations
  5. Summary
  6. Solved Examples Based on Solution of Trigonometric Equations
General Solution of Trigonometric Equations
General Solution of Trigonometric Equations

In this article, we will cover the concept of Solution of Trigonometric Equations. This category falls under the broader category of Trigonometry, which is a crucial Chapter in class 11 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination(JEE Main) and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Over the last ten years of the JEE Main exam (from 2013 to 2023), a total of thirty-one questions have been asked on this concept, including one in 2016, two in 2017, one in 2019, one in 2020, seven in 2021, nine in 2022 and eight in 2023.

Trigonometric Equations

Trigonometric equations are, as the name implies, equations that involve trigonometric functions. Trigonometric equations are satisfied only for some values (finite or infinite in number) of the angles. A value of the unknown angle that satisfies the given trigonometric equation is called a solution or a root of the equation. For example, equation 2 sin x = 1 is satisfied by x = π/6 is the solution of the equation between o and π. The solutions of a trigonometric equation lying in the interval [0,π ) are called principal solutions.

We know that trigonometric ratios are periodic functions. Functions sin x, cos x, sec x, and cosec x are periodic with period 2π and functions tan x and cot x are periodic functions with period π. Therefore, solutions of trigonometric equations can be generalized with the help of the period of trigonometric functions.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Solution of Trigonometric Equation

The value of an unknown angle that satisfies the given trigonometric equation is called a solution or root of the equation. For example, 2sinθ=1, clearly θ=30 satisfies the equation; therefore, 30 is a solution of the equation. Now trigonometric equation usually has infinite solutions due to the periodic nature of trigonometric functions. So this equation also has (360+30)o,(720+30)o,(-360+30)o, and so on, as its solutions.

Principal Solution

The solutions of a trigonometric equation that lie in the interval [0, 2π). For example, if 2sinθ=1 , then the two values of sinӨ between 0 and 2π are π/6 and 5π/6. Thus, π/6 and 5π/6 are the principal solutions of equation 2sinθ=1 .

General Solution

As trigonometric functions are periodic, solutions are repeated within each period, so, trigonometric equations may have an infinite number of solutions. The solution consisting of all possible solutions of a trigonometric equation is called its general solution.

We have the following trigonometric equations whose solutions are quadrantile angles.

Equation

Solution

sinθ=0

θ=nπ,nI

cosθ=0

θ=(2n+1)π2,nI

tanθ=0

θ=nπ,nI

sinθ=1

θ=(4n+1)n2,nI

cosθ=1

θ=2nπ,nI

sinθ=1

θ=(4n1)π2,nI

cosθ=1

θ=(2n+1)π,nI

cotθ=0

θ=(2n+1)n2,nI

General Solution of some Standard Equations

1. sinθ=sinα

Given, sinθ=sinαsinθsinα=02cosθ+α2sinθα2=0cosθ+α2=0 or sinθα2=0θ+α2=(2n+1)π2 or θα2=nπ,nIθ=(2n+1)πα or θ=2nπ+α,nIθ=( any odd multiple of π)α .....(i)θ=( any even multiple of π)+α .....(ii) from (i) and (ii) θ=nπ+(1)nα,nI

2. cosθ=cosα

cosαcosθ=02sinα+θ2sinθα2=0sinα+θ2=0 or sinθα2=0α+θ2=nπ or θα2=nπ,nIθ=2nπα or θ=2nπ+α,nZθ=2nπ±α,nI

3. tanθ=tanα

Given, tanθ=tanαsinθcosθ=sinαcosαsinθcosαcosθsinα=0sin(θα)=0θα=nπθ=nπ+α, where nI

Trigonometric Equation f2(x)=f2(α), where f(x) is trigonometric function

4. sin2θ=sin2α

sin2θ=sin2αsin(θ+α)sin(θα)=0
we are using the identity, sin(A+B)sin(AB)=sin2Asin2B
sin(θ+α)=0 or sin(θα)=0θ+α=nπ or θα=nπ,nIθ=nπ±αI

Note:

The general solution of the equation cos2θ=cos2α and tan2θ=tan2α is also θ=nπ±αI.

Important Points to remember while solving trigonometric equations

  1. While solving a trigonometric equation, squaring the equation at any step should be avoided as much as possible. If squaring is necessary, check the solution for values that do not satisfy the original equation.
  2. Never cancel terms containing unknown terms on the two sides that are in the product. It may cause the loss of a genuine solution.
  3. The answer should not contain such values of angles that make any of the terms undefined or infinite.
  4. Domain should not change while simplifying the equation. If it changes, necessary corrections must be made.
  5. Check that the denominator is not zero at any stage while solving the equations.

Summary

Solving a triangle entails utilizing geometric and trigonometric principles to determine the lengths of sides and measures of angles based on given information. By applying the Law of Sines, the Law of Cosines, and other relevant formulas, one can systematically find all unknown elements of the triangle, ensuring accuracy through the verification of angles and side lengths.

Recommended Video :

Solved Examples Based on Solution of Trigonometric Equations

Example 1: Let S={x(π2,π2):91tan2x+9tan2x=10} and b=xStan2(x3), then 16(β14)2 is is equal to: [JEE MAINS 2023]

1) 16

2) 32

3) 8

4) 64

Solution:

Let 9tan2x=P9P+P=10P210P+9=0(P9)(P1)=0P=1,99tan2x=1,9tan2x=9tan2x=0,tan2x=1x=0,±π4x(π2,p2)β=tan2(0)+tan2(+π12)+tan2(π12)=0+2(tan15)22(23)22(743) Then 16(148314)2=32

Hence, the answer is option 2.

Example 2: The set of all values λ of for which the equation cos22x2sin4x2cos2x=λ has a real solution x, is [JEE MAINS 2023]

1) [2,1]
2) [1,12]
3) [32,1]
4) [2,32]

Solution:

cos22x2(1cos2x2)2(1+cos2x)=λcos22x2(1cos22x2cos2x4)1cos2x=λ

Let cos2x=t
2t21t2+2t22t=2λt23=2λ0t21t2=2λ+302λ+3132λ232λ1

Hence, the answer is the option 3.

Example 3: If m and n respectively are the numbers of positive and negative values of q in the interval [p,p] that satisfy the equation cos2θcosθ2=cos3θcos9θ2, then mn is equal to [JEE MAINS 2023]

1) 25

2) 20

3) 16

4) 27

Solution:

2cos2θcosθ2=2cos3θcos9θ2cos5θ2+cos3θ2=cos15θ2+cos3θ2cos5θ2cos15θ2=0sin5θ=0 or sin5θ2=0θ=nπ5 or 2nπ5θ=0,±π5,±2π5,±3π5,±4π5,±πm=n=5mn=25

Hence, the answer is 25.

Example 4: The number of values of \alpha in \left [ 0,2\pi \right ]for which 2\sin ^{3}\alpha -7\sin ^{2}\alpha +7\sin \alpha =2,\: \; is:

1) 6
2) 4
3) 3
4) 1

Solution:

As we learned in

Trigonometric Equations -
The equations involving trigonometric functions of unknown angles are known as trigonometric equations.
wherein-
e.g. cos2θ4cosθ=1
2sin3α7sin2α+7sinα=2
(2sin2α5sinα+2)(sinα1)=0
sinα=1 or sinα=5±25164=84
Hence, possible solutions are sinα=1 or 12
Hence solutions are π6,π2 and 3π6
Hence, the answer is the option 3.

Example 5: The number of elements in the set S={θ[0,2π]:3cos4θ5cos2θ2sin6θ+2=0} is: [JEE MAINS 2023]

1) 10

2) 9

3) 8

4) 12

Solution:

3cos4θ5cos2θ2sin6θ+2=03cos4θ3cos2θ2cos2θ2sin6θ+2=03cos4θ3cos2θ+2sin2θ2sin6θ=03cos2θ(cos2θ1)+2sin2θ(sin4θ1)=03cos2θsin2θ+2sin2θ(1+sin2θ)cos2θ1sin2θcos2θ(2+2sin2θ3)=0sin2θcos2θ(2sin2θ1)=0

Case 1: sin2θ=03 solution; θ={0,π,2π}

Case 2: cos2θ=02 solution ;θ= {π2,3π2}

Case 3: sin2θ=124 solution ;θ={π4,3π4,5π4,7π4}

Hence, the answer is the option (2).


Articles

Get answers from students and experts
Back to top