The half-angle formula is used to find the value of the trigonometric ratios like 22.5°, 15°. half-angle of trigonometric functions with the help of an angle. These formulae can be derived from the reduction formulas and we can use them when we have an angle that is half the size of a special angle. It is used to find the exact value of the trigonometric ratios of 15 (half of 30 degrees), 22.5( half of 45 degrees), and so on.
JEE Main 2025: Sample Papers | Mock Tests | PYQs | Study Plan 100 Days
JEE Main 2025: Maths Formulas | Study Materials
JEE Main 2025: Syllabus | Preparation Guide | High Scoring Topics
In this article, we will cover the concept of the half-angle formula. This concept falls under the broader category of Trigonometry, which is a crucial Chapter in class 11 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination(JEE Main) and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more.
The half-angle formula is used to find the value of the trigonometric ratios of the angles like 22.5° (which is half of the angle 45°), 15° (which is half of the angle 30°), etc.
The half-angle formula can be derived with the help of the reduction formula.
1. $\sin \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{2}}$
2. $\cos \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1+\cos \alpha}{2}}$
3. $\tan \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}$
Note that the half-angle formulas are preceded by a $\pm$ sign. This does not mean that both positive and negative expressions are valid. Rather, only one sign needs to be taken and that depends on the quadrant in which $\alpha / 2$ lies.
The half-angle formula can be derived with the help of the reduction formula.
Reduction formulas are:
$\sin ^2 \theta=\frac{1-\cos (2 \theta)}{2}$
$\cos ^2 \theta=\frac{1+\cos (2 \theta)}{2}$
$\tan ^2 \theta=\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)}$
The half-angle formula for sine is derived as follows:
$
\begin{aligned}
\sin ^2 \theta & =\frac{1-\cos (2 \theta)}{2} \\
\sin ^2\left(\frac{\alpha}{2}\right) & =\frac{1-\cos \left(2 \cdot \frac{\alpha}{2}\right)}{2} \\
& =\frac{1-\cos \alpha}{2} \\
\sin \left(\frac{\alpha}{2}\right) & = \pm \sqrt{\frac{1-\cos \alpha}{2}}
\end{aligned}
$
To derive the half-angle formula for cosine, we have
$
\begin{aligned}
\cos ^2 \theta & =\frac{1+\cos (2 \theta)}{2} \\
\cos ^2\left(\frac{\alpha}{2}\right) & =\frac{1+\cos \left(2 \cdot \frac{\alpha}{2}\right)}{2} \\
& =\frac{1+\cos \alpha}{2} \\
\cos \left(\frac{\alpha}{2}\right) & = \pm \sqrt{\frac{1+\cos \alpha}{2}}
\end{aligned}
$
Derivation of Half Angle Formula for Tangent
For the tangent identity, we have
$
\begin{aligned}
\tan ^2 \theta & =\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)} \\
\tan ^2\left(\frac{\alpha}{2}\right) & =\frac{1-\cos \left(2 \cdot \frac{\alpha}{2}\right)}{1+\cos \left(2 \cdot \frac{\alpha}{2}\right)} \\
& =\frac{1-\cos \alpha}{1+\cos \alpha} \\
\tan \left(\frac{\alpha}{2}\right) & = \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}
\end{aligned}
$
We can also represent the half-angle formula using the side of the triangle.
$
\begin{aligned}
& \sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}} \\
& \sin \frac{B}{2}=\sqrt{\frac{(s-a)(s-c)}{a c}} \\
& \sin \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{a b}}
\end{aligned}
$
We know that,
$
\cos \mathrm{A}=1-2 \sin ^2 \frac{\mathrm{A}}{2} \Rightarrow \sin ^2 \frac{\mathrm{A}}{2}=\frac{1-\cos \mathrm{A}}{2}
$
Now, for any $\triangle A B C, \cos A=\frac{b^2+c^2-a^2}{2 b c}$
Using the above two formulas
In a similar way, we can derive other formulas.
$
\begin{aligned}
& \sin ^2 \frac{A}{2}=\frac{1}{2}\left[1-\frac{b^2+c^2-a^2}{2 b c}\right] \\
& =\frac{1}{2}\left[\frac{2 b c-b^2-c^2+a^2}{2 b c}\right] \\
& =\frac{1}{2}\left[\frac{a^2-(b-c)^2}{2 b c}\right] \\
& =\frac{(\mathrm{a}-\mathrm{b}+\mathrm{c})(\mathrm{a}+\mathrm{b}-\mathrm{c})}{4 \mathrm{bc}} \\
& =\frac{(2 \mathrm{~s}-2 \mathrm{~b})(2 \mathrm{~s}-2 \mathrm{c})}{4 \mathrm{bc}} \quad[\because \mathrm{a}+\mathrm{b}+\mathrm{c}=2 \mathrm{~s}] \\
& \Rightarrow \sin ^2 \frac{\mathrm{A}}{2}=\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{bc}} \\
& \text { As } 0<\frac{\mathrm{A}}{2}<\frac{\pi}{2} \text {, so } \sin \frac{\mathrm{A}}{2}>0 \\
& \sin \frac{\mathrm{A}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{bc}}}
\end{aligned}
$
$
\begin{aligned}
& \cos \frac{\mathrm{A}}{2}=\sqrt{\frac{(\mathrm{s})(\mathrm{s}-\mathrm{a})}{\mathrm{bc}}} \\
& \cos \frac{\mathrm{B}}{2}=\sqrt{\frac{(\mathrm{s})(\mathrm{s}-\mathrm{b})}{\mathrm{ac}}} \\
& \cos \frac{\mathrm{C}}{2}=\sqrt{\frac{(\mathrm{s})(\mathrm{s}-\mathrm{c})}{\mathrm{ab}}}
\end{aligned}
$
We know that
$
\begin{aligned}
& \cos \mathrm{A}=2 \cos ^2 \frac{\mathrm{A}}{2}-1 \Rightarrow \cos ^2 \frac{\mathrm{A}}{2}=\frac{1+\cos \mathrm{A}}{2} \\
& \text { And for any } \triangle \mathrm{ABC}, \cos \mathrm{A}=\frac{\mathrm{b}^2+\mathrm{c}^2-\mathrm{a}^2}{2 \mathrm{bc}}
\end{aligned}
$
Using the above two formulas
$
\begin{aligned}
& \cos ^2 \frac{A}{2}=\frac{1}{2}\left[1+\frac{b^2+c^2-a^2}{2 b c}\right] \\
&=\frac{1}{2}\left[\frac{2 \mathrm{bc}+\mathrm{b}^2+\mathrm{c}^2-\mathrm{a}^2}{2 \mathrm{bc}}\right] \\
&=\frac{1}{2}\left[\frac{\left.(\mathrm{b}+\mathrm{c})^2-\mathrm{a}^2\right]}{2 \mathrm{bc}}\right] \\
&=\frac{(\mathrm{b}+\mathrm{c}+\mathrm{a})(\mathrm{b}+\mathrm{c}-\mathrm{a})}{4 \mathrm{bc}} \\
&=\frac{(\mathrm{b}+\mathrm{c}+\mathrm{a})(\mathrm{a}+\mathrm{b}+\mathrm{c}-2 \mathrm{a})}{4 \mathrm{bc}} \\
&=\frac{(2 \mathrm{~s})(2 \mathrm{~s}-2 \mathrm{a})}{4 \mathrm{bc}} \quad[\because \mathrm{a}+\mathrm{b}+\mathrm{c}=2 \mathrm{~s}] \\
& \Rightarrow \cos ^2 \frac{\mathrm{A}}{2}=\frac{(\mathrm{s})(\mathrm{s}-\mathrm{a})}{\mathrm{bc}}
\end{aligned}
$
As $0<\frac{\mathrm{A}}{2}<\frac{\pi}{2}$, so $\cos \frac{\mathrm{A}}{2}>0$
$
\cos \frac{\mathrm{A}}{2}=\sqrt{\frac{(\mathrm{s})(\mathrm{s}-\mathrm{a})}{\mathrm{bc}}}
$
In a similar way, we can derive other formulas
This half-angle formula can be proved using tan x = sin x/cos x, and using the half-angle formula of sine and cosine.
$
\begin{aligned}
& \tan \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\
& \tan \frac{B}{2}=\sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \\
& \tan \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}
\end{aligned}
$
This half-angle formula can be proved using $\tan x= \frac{\sin x}{\cos x}$ and using the half-angle formula of sine and cosine.
Example 1: If $\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)$ are in arithmetic progression and $\tan \left(\frac{\pi}{9}\right), \mathrm{y}, \tan \left(\frac{5 \pi}{18}\right)$ are also in arithmetic progression, then $|x-2 y|$ is equal to [JEE MAINS 2021]
Solution
$
\begin{aligned}
& x=\frac{\tan \left(\frac{\pi}{9}\right)+\tan \left(\frac{7 \pi}{18}\right)}{2} \text { and } \\
& y=\frac{\tan \left(\frac{\pi}{9}\right)+\tan \left(\frac{5 \pi}{18}\right)}{2}
\end{aligned}
$
$
\begin{aligned}
& \therefore x-2 y=\frac{1}{2}\left[\tan \left(\frac{\pi}{9}\right)+\tan \left(\frac{7 \pi}{18}\right)-2 \tan \left(\frac{\pi}{9}\right)-2 \tan \left(\frac{5 \pi}{18}\right)\right] \\
& =\frac{1}{2}\left[\tan \left(\frac{7 \pi}{18}\right)-\tan \left(\frac{\pi}{9}\right)-2 \tan \left(\frac{5 \pi}{18}\right)\right] \\
& =\frac{1}{2}\left[\tan \left(\frac{\pi}{2}-\frac{\pi}{9}\right)-\tan \left(\frac{\pi}{9}\right)-2 \tan \left(\frac{5 \pi}{18}\right)\right] \\
& =\frac{1}{2}\left[\cot \left(\frac{\pi}{9}\right)-\tan \left(\frac{\pi}{9}\right)-2 \tan \left(\frac{\pi}{2}-\frac{2 \pi}{9}\right)\right] \\
& =\frac{1}{2}\left[\frac{\cos \left(\frac{\pi}{9}\right)}{\sin \left(\frac{\pi}{9}\right)}-\frac{\sin \left(\frac{\pi}{9}\right)}{\cos \left(\frac{\pi}{9}\right)}-2 \cot \left(\frac{2 \pi}{9}\right)\right] \\
& =\frac{1}{2}\left[\frac{2 \cos (2 \pi / 9)}{\sin \left(\frac{2 \pi}{9}\right)}-2 \cot \left(\frac{2 \pi}{9}\right)\right] \\
& =0
\end{aligned}
$
Hence, the answer is 0
Example 2: The value of $2 \sin \left(\frac{\pi}{8}\right) \sin \left(\frac{2 \pi}{8}\right) \sin \left(\frac{3 \pi}{8}\right) \sin \left(\frac{5 \pi}{8}\right) \sin \left(\frac{6 \pi}{8}\right) \sin \left(\frac{7 \pi}{8}\right)$ is :
[JEE MAINS 2021]
Solution:
$
\begin{aligned}
& \text { As } \sin \left(\frac{5 \pi}{8}\right)=\sin \left(\pi-\frac{3 \pi}{8}\right)=\sin \left(\frac{3 \pi}{8}\right) \\
& \text { similarly } \sin \left(\frac{6 \pi}{8}\right)=\sin \left(\frac{2 \pi}{8}\right) \text { and } \sin \left(\frac{7 \pi}{8}\right)=\sin \left(\frac{\pi}{8}\right)
\end{aligned}
$
$\therefore$ Required value
$
\begin{aligned}
& =2 \cdot \sin ^2\left(\frac{\pi}{8}\right) \cdot \sin ^2\left(\frac{2 \pi}{8}\right) \cdot \sin ^2\left(\frac{3 \pi}{8}\right) \\
& =2 \cdot\left(\frac{1}{\sqrt{2}}\right)^2 \cdot \sin ^2\left(\frac{\pi}{8}\right) \cdot \sin ^2\left(\frac{3 \pi}{8}\right) \\
& =\sin ^2\left(\frac{\pi}{8}\right) \cdot \cos ^2\left(\frac{\pi}{8}\right) \\
& =\frac{4}{4} \sin ^2\left(\frac{\pi}{8}\right) \cdot \cos ^2\left(\frac{\pi}{8}\right) \\
& =\frac{1}{4}\left(\sin \left(\frac{\pi}{4}\right)\right)^2=\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{8}
\end{aligned}
$
Hence, the answer is $1 / 8$
Example 3: If $\cos \alpha+\cos \beta=\frac{3}{2}$ and $\sin \alpha+\sin \beta=\frac{1}{2}$ and $\theta \quad$ is the arithmetic mean of $\alpha$ and $\beta$, then $\sin 2 \theta+\cos 2 \theta$ is equal to : [JEE MAINS 2015]
Solution:
Trigonometric Ratios of Submultiples of an Angle -
$
\begin{gathered}
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^2 \theta} \\
\sin C+\sin D=2 \cdot \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right) \\
\cos C+\cos D=2 \cdot \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)
\end{gathered}
$
This shows the transformation formulae and double angle formulae.
Therefore,
$
\begin{aligned}
& \cos \alpha+\cos \beta=\frac{3}{2} \Rightarrow 2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}=\frac{3}{2} \\
& \sin \alpha+\sin \beta=\frac{1}{2} \Rightarrow 2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}=\frac{1}{2}
\end{aligned}
$
dividing (2) by (1), we get
$
\tan \frac{(\alpha+\beta)}{2}=\frac{1}{3} \Rightarrow \tan \theta=\frac{1}{3}
$
$
\begin{aligned}
& \Rightarrow \tan 2 \theta=\frac{2 \times \frac{1}{3}}{1-\frac{1}{9}}=\frac{3}{4} \\
& \Rightarrow \sin 2 \theta=\frac{3}{5}, \quad \cos 2 \theta=\frac{4}{5}
\end{aligned}
$
[By making a triangle]
Thus,
$
\Rightarrow \sin 2 \theta+\cos 2 \theta=\frac{7}{5}
$
Hence, the answer is $7 / 5$
Example 4: Let $\alpha, \beta$ be such that $\pi<\alpha-\beta<3 \pi$. If $\sin \alpha+\sin \beta=-21 / 65$, and
$\cos \alpha+\cos \beta=-27 / 65$ then the value of $\cos \frac{\alpha-\beta}{2}$ is :
Solution:
$\sin \alpha+\sin \beta=\frac{-21}{65} \Rightarrow 2 \sin \frac{(\alpha+\beta)}{2} \cos \frac{(\alpha-\beta)}{2}=\frac{-21}{65}$ $\qquad$
$
\cos \alpha+\cos \beta=\frac{-27}{65} \Rightarrow 2 \cos \frac{(\alpha+\beta)}{2} \cos \frac{(\alpha-\beta)}{2}=\frac{-21}{65}
$
Squaring and adding,
$
\begin{aligned}
& 4 \cos ^2 \frac{(\alpha-\beta)}{2}\left[\sin ^2 \frac{\alpha+\beta}{2}+\cos ^2 \frac{\alpha+\beta}{2}\right]=\frac{21^2+27^2}{65^2} \\
& \Rightarrow \cos ^2 \frac{(\alpha-\beta)}{2}=\frac{1170}{4 \times 4225} \Rightarrow \cos ^2 \frac{(\alpha-\beta)}{2}=\frac{1170}{4 \times 4225}=\frac{9}{130} \\
& \Rightarrow \cos \frac{(\alpha-\beta)}{2}=\frac{-3}{\sqrt{130}} \\
& {\left[\because \pi<\alpha-\beta<3 \pi \Rightarrow \frac{\pi}{2} \leq \frac{\alpha-\beta}{2} \leq \frac{3 \pi}{2} \Rightarrow \cos \left(\frac{\alpha-\beta}{2}\right)<0\right]} \\
& \text { Hence, the answer is }-\frac{3}{\sqrt{130}}
\end{aligned}
$
Example 5: Find the range of functions $\tan \frac{\alpha}{2} \cdot \tan \alpha$
Solution:
$
\begin{aligned}
& \quad \tan \frac{\alpha}{2} \cdot \tan \alpha=\left(\frac{1-\cos \alpha}{\sin \alpha}\right) \cdot \frac{\sin \alpha}{\cos \alpha} \\
& =\sec \alpha-1 \\
& \text { Range of } \sec \alpha(-\infty,-1] U [ 1, \infty) \\
& \text { Range of } f(\alpha) \text { is }(-\infty,-2] U [0, \infty)
\end{aligned}
$
Hence, the answer is $(-\infty,-2] U [0, \infty)$
15 Feb'25 10:27 AM
15 Feb'25 09:37 AM
13 Feb'25 08:57 PM
13 Feb'25 08:40 PM
13 Feb'25 08:07 PM
13 Feb'25 08:01 PM
13 Feb'25 07:58 PM
13 Feb'25 07:56 PM
13 Feb'25 07:49 PM
13 Feb'25 07:46 PM