In this article, we'll learn the key formulas that are essential for understanding triangles. A triangle is more special as compared to other polygons as it is the polygon having the least number of sides. A triangle has six main elements, three sides, and three angles. Triangles are basic yet fascinating shapes in geometry, offering a lot to learn about angles, side lengths, perimeter, and area.
JEE Main 2025: Sample Papers | Mock Tests | PYQs | Study Plan 100 Days
JEE Main 2025: Maths Formulas | Study Materials
JEE Main 2025: Syllabus | Preparation Guide | High Scoring Topics
In this article, we will cover the concept of the Important Solutions of Triangle Formulas. This category falls under the broader category of Trigonometry, which is a crucial Chapter in class 11 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination(JEE MAIN).
In a triangle, there are six variables, three sides (say a, b, c), and three angles (say A, B, C). If any three of these six variables (except all the angles A, B, C) is given, then the triangle can be known completely: the other three variables can be found using the formulae we learned in this chapter.
There are different cases that arise when a few components of the triangle are given.
When three sides $(a, b,$ and $c)$ of a triangle are given
The remaining variables can be found by using the following formulae
$
\begin{array}{|c|c|}
\hline \text{Given} & \text{To determine} \\
\hline a, b, c & (i) \text{Area of } \triangle = \sqrt{s(s-a)(s-b)(s-c)} \text{ where, } 2s = a+b+c \\
\hline &
\begin{array}{l}
\text{(ii) To find angles, use cosine rule } \cos A = \frac{b^2 + c^2 - a^2}{2bc}, \text{ similarly angle B can be found.} \\
\text{For angle C, use } 180^\circ - A - B = C.
\end{array} \\
\hline &
\text{(iii) Angles can also be calculated using half-angle formula} \\
& \quad \tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}
\\
\hline
\end{array}$
Problems in which two sides and included angles are given
When two sides (say $a, b)$ and included angle (angle $C$) of a triangle are given.
$
\begin{array}{|c|c|}
\hline \text{Given} & \text{To determine} \\
\hline a, b \text{ and } \angle C &
\begin{array}{l}
\text{(i) The side opposite to } \angle C \text{ can be determined using cosine rule, i.e.,} \\
\quad c^2 = a^2 + b^2 - 2ab \cos C
\end{array} \\
\hline &
\begin{array}{l}
\text{(ii) Using cosine rule again, second angle can also be determined,} \\
\quad \cos A = \frac{b^2 + c^2 - a^2}{2bc}
\end{array} \\
\hline &
\text{(iii) Area of } \triangle = \frac{1}{2} a \cdot b \sin C \\
\hline
\end{array}$
Problems in which one side and two angles are given
When one side (say $a$) and two angles (say $A$ and $B$) are given
$
\begin{array}{|c|c|}
\hline \text{Given} & \text{To determine} \\
\hline a \text{ and } \angle A, \angle B &
\begin{array}{l}
\text{(i) The third angle is } \angle C = 180^\circ - \angle A - \angle B
\end{array} \\
\hline &
\begin{array}{l}
\text{(ii) Using sine rule, sides b and c can be found.} \\
\quad b = a \frac{\sin B}{\sin A} \quad \text{and} \quad c = a \frac{\sin C}{\sin A}
\end{array} \\
\hline &
\text{(iii) Area of } \triangle = \frac{1}{2} a \cdot b \sin C \\
\hline
\end{array}$
When two side $a, b$ and an angle opposite to one of these sides is given (say angle $A$ is given)
Using the sine rule, we get
$
\sin B=\frac{b}{a} \sin A
$
Now following possibilities can occur
1. When $\frac{\mathrm{b}}{\mathrm{a}} \sin \mathrm{A}>1$ or $\mathrm{a}<\mathrm{b} \sin \mathrm{A}$
In the relation $\sin B=\frac{b}{a} \sin A$, which means $\sin B>1$, which is impossible
So, no such triangle exists
2. When $\frac{b}{a} \sin A=1$, then $\sin B=1 \Rightarrow \angle B=90^{\circ}$
So a unique triangle is possible which is right angle triangle with angle $B=90^{\circ}$
3. When $\frac{b}{a} \sin \mathrm{A}<1$ or $\mathrm{a}>\mathrm{b} \sin \mathrm{A}$
Here in $B<1$, which is possible, and hence a triangle will exist
Angle $C$ can be found out using $C=180-A-B$
The ratio of the sine of one of the angles to the length of its opposite side will be equal to the other two ratios of the sine of the angle measured to the opposite side.
$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$
For a triangle with angles A, B, and C, and opposite corresponding sides a, b, and c, respectively, the Law of Cosines is given as three equations.
$\cos A=\frac{b^2+c^2-a^2}{2 b c}, \quad \cos B=\frac{a^2+c^2-b^2}{2 a c}, \quad \cos C=\frac{a^2+b^2-c^2}{2 a b}$
For any $\triangle A B C$,
$
\begin{aligned}
& \tan \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}} \cot \frac{\mathrm{C}}{2} \\
& \tan \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)=\frac{\mathrm{b}-\mathrm{c}}{\mathrm{b}+\mathrm{c}} \cot \frac{\mathrm{A}}{2} \\
& \tan \left(\frac{\mathrm{C}-\mathrm{A}}{2}\right)=\frac{\mathrm{c}-\mathrm{a}}{\mathrm{c}+\mathrm{a}} \cot \frac{\mathrm{B}}{2}
\end{aligned}
$
In the $\triangle A B C$,
1. $a=c \cos B+b \cos C$
2. $b=c \cos A+a \cos C$
3. $c=b \cos A+a \cos B$
$\begin{aligned} & \sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}} \\ & \sin \frac{B}{2}=\sqrt{\frac{(s-a)(s-c)}{a c}} \\ & \sin \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{a b}}\end{aligned}$
$
\begin{aligned}
\cos \frac{\mathrm{A}}{2} & =\sqrt{\frac{(\mathrm{s})(\mathrm{s}-\mathrm{a})}{\mathrm{bc}}} \\
\cos \frac{\mathrm{B}}{2} & =\sqrt{\frac{(\mathrm{s})(\mathrm{s}-\mathrm{b})}{\mathrm{ac}}} \\
\cos \frac{\mathrm{C}}{2} & =\sqrt{\frac{(\mathrm{s})(\mathrm{s}-\mathrm{c})}{\mathrm{ab}}}
\end{aligned}
$
$
\begin{aligned}
& \tan \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\
& \tan \frac{B}{2}=\sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \\
& \tan \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}
\end{aligned}
$
Area of $\Delta \mathrm{ABC}=\Delta=\frac{1}{2} b \cdot \mathrm{c} \sin \mathrm{A}$
$
\begin{aligned}
& =\frac{1}{2} a \cdot \mathrm{b} \sin \mathrm{C} \\
& =\frac{1}{2} c \cdot \mathrm{a} \sin \mathrm{B}
\end{aligned}
$
$
\Delta=\frac{1}{2} b \cdot \mathrm{c} \sin \mathrm{A}=\frac{1}{2} b c \cdot 2 \sin \frac{\mathrm{A}}{2} \cos \frac{\mathrm{A}}{2}
$
use half angle formula
$
\begin{aligned}
& =\frac{1}{2} \cdot b c \cdot \sqrt{\frac{(s-b)(s-c)}{b c}} \sqrt{\frac{s(s-a)}{b c}} \\
& =\sqrt{s(s-a)(s-b)(s-c)}
\end{aligned}
$
The radius of the circumcircle of a $\triangle A B C, R$ is given by the law of sines:
$
\mathrm{R}=\frac{a}{2 \sin \mathrm{A}}=\frac{b}{2 \sin \mathrm{B}}=\frac{c}{2 \sin \mathrm{C}}
$
1. In - radius, $r$ is given by $=\frac{\Delta}{s}$
2. $r=(s-a) \tan \frac{\mathrm{A}}{2}=(s-b) \tan \frac{\mathrm{B}}{2}=(s-c) \tan \frac{\mathrm{C}}{2}$
3. $r=4 \mathrm{R} \sin \frac{\mathrm{A}}{2} \sin \frac{\mathrm{B}}{2} \sin \frac{\mathrm{C}}{2}$
1. $r_I=\frac{\Delta}{s-a}, r_2=\frac{\Delta}{s-b}, r_3=\frac{\Delta}{s-c}$
2. $r_1=s \tan \frac{A}{2}, r_2=s \tan \frac{B}{2}, r_3=s \tan \frac{C}{2}$
3. $r_t=4 R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
$r_2=4 R \cos \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2}$
$r_3=4 R \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}$
(i) circumcentre (O): $O A=R$ and $O_a=R \cos A$
(ii) Incentre (I): $\mathrm{IA}=\mathrm{r} \operatorname{cosec}(\mathrm{A} / 2)$ and $\mathrm{I}_{\mathrm{a}}=\mathrm{r}$
(iii) Excentre $\left(I_1\right): I_1 A=r_1 \operatorname{cosec}(A / 2)$
(iv) Orthocentre: $H A=2 R \cos A$ and $H_a=2 R \cos B \cos C$
The triangle formed by joining the feet of the altitudes is called the Pedal Triangle.
(i) Its angles are $\pi-2 A, \pi-2 B$ and $\pi-2 C$.
(ii) The sides are a $\cos A=R \sin 2 A$
$a \cos B=R \sin 2 B$
a $\cos C=R \sin 2 C$
(iii) Circum radii of the triangle $\mathrm{PBC}, \mathrm{PCA}, \mathrm{PAB}$, and ABC are equal.
The triangle formed by joining the three excentres $I_1, I_2$, and $I_3$ of $\triangle A B C$ is called the excentral triangle.
(i) $\triangle A B C$ is the pedal triangle of the $\Delta I_1 I_2 I_3$.
(ii) Angles are $\pi / 2-\mathrm{A} / 2, \pi / 2-\mathrm{B} / 2, \pi / 2-\mathrm{C} / 2$
(iii) Sides are $4 R \cos (A / 2), 4 R \cos (B / 2)$ and $4 R \cos (C / 2)$
(iv) $I I_1=4 R \sin (A / 2), I I_2=4 R \sin (B / 2), I I_3=4 R \sin (C / 2)$
(v) Incentre I of $\triangle A B C$ is the orthocentre of the excentral $\Delta I_1 I_2 I_3$.
(i) Distance between the circumcentre and orthocentre $\mathrm{OH}^2=\mathrm{R}^2(1-8 \cos \mathrm{A}$ $\cos B \cos C)$
(ii) Distance between the circumcentre and incentre $\mathrm{OI}^2=\mathrm{R}^2(1-8 \sin (\mathrm{A} / 2)$ $\sin (B / 2) \sin (C / 2)=R^2-2 R r$
$
\begin{gathered}
\text { Area of Triangle }(\Delta)=\frac{1}{2} a b \sin C=\frac{1}{2} b c \sin A=\frac{1}{2} c a \sin B \\
=\sqrt{s(s-a)(s-b)(s-c)}
\end{gathered}
$
If $D$ is a point on the side $B C$ of a triangle $A B C$ that divides $B C$ in the ratio $m: n$, i.e., $B D$ : $D C=m: n$, then:
$
(m+n) \cot \theta=m \cot \alpha-n \cot \beta=n \cot B-m \cot C
$
In a triangle $A B C$, if $A D$ is the median through $A$, then:
$
A B^2+A C^2=2\left(A D^2+B D^2\right)
$
(i) Length of an angle bisector from $A\left(\beta_a\right)$ : $
\beta_a=\frac{2 b c \cos A}{b+c}
$
(ii) Length of the median from $A\left(m_a\right)$ : $
m_a=\frac{1}{2} \sqrt{2 b^2+2 c^2-a^2}
$
(iii) Length of the altitude from $A\left(A_a\right)$ : $
A_a=\frac{2 \Delta}{a}
$
Example 1: In triangle ABC , if $\mathrm{a}=2, \mathrm{~b}=1$ and $\angle C=60^{\circ}$ then find the other two angles.
Solution:
$
\begin{aligned}
& \cos C=\frac{a^2+b^2-c^2}{2 a b} \\
& \frac{1}{2}=\frac{4+1-c^2}{4} \\
& c=\sqrt{3}
\end{aligned}
$
Also, $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
$
\begin{aligned}
& \frac{\sin A}{2}=\frac{\sin B}{1}=\frac{\frac{\sqrt{3}}{2}}{\sqrt{3}} \\
& \sin A=1 \Rightarrow A=\frac{\pi}{2} \\
& \sin B=\frac{1}{2} \Rightarrow B=\frac{\pi}{6}
\end{aligned}
$
Hence, the other two angles $\frac{\pi}{6}, \frac{\pi}{2}$
Example 2: Consider a triangle with sides $3^{\prime \prime}, 6^{\prime \prime}$ and $9^{\prime \prime}$. Find the $\angle A$.
Solution
The triangle with sides $3^{\prime \prime}, 6^{\prime \prime}$ and $9^{\prime \prime}$.
Using the law of cosine,
$
\begin{aligned}
& \cos A=\frac{\left(b^2+c^2-a^2\right)}{2 b c} \\
& \cos A=\frac{(36+81-9)}{108} \\
& \cos A=1
\end{aligned}
$
$
A=0^{\circ}
$
Hence, the answer is 0
Example 3: Consider a triangle with sides $5^{\prime \prime}, 8^{\prime \prime}$ and $10^{\prime \prime}$. Find the $\angle A, \angle B$, and $\angle C$.
Solution: Given that, The triangle with sides $5^{\prime \prime}, 8^{\prime \prime}$ and $10^{\prime \prime}$.
Using the law of cosine,
$
\begin{aligned}
& \cos A=\frac{\left(b^2+c^2-a^2\right)}{2 b c} \\
& \cos A=\frac{(64+100-25)}{160} \\
& \cos A=0.7125 \\
& A=44.5^{\circ}
\end{aligned}
$
Using the law of sine to find the $\angle B$,
$
\begin{aligned}
& \frac{\sin B}{b}=\frac{\sin A}{a} \\
& \sin B=\frac{b}{a} \sin A \\
& \sin B=\frac{8}{5} \sin 44.5^{\circ} \\
& \sin B=\frac{8}{5} \times 0.7^{\circ} \\
& \sin B=1.12
\end{aligned}
$
$
B \approx 90^{\circ}
$
The third angle is,
$
\begin{aligned}
& C=180^{\circ}-A-B \\
& C=45.4^{\circ}
\end{aligned}
$
Hence, the answer is 45.4
Example 4: If $2 \sin ^3 x+\sin 2 \mathrm{x} \cos \mathrm{x}+4 \sin \mathrm{x}-4=0$ has exactly 3 solutions in the interval $\left[0, n \frac{\pi}{2}\right], \mathrm{n} \in \mathrm{N}$. Then the roots of the equation $x^2+\mathrm{nx}+(\mathrm{n}-3)=0$ belong to:
Solution: We know $\sin 2 x=2 \sin x \cos x$
$
\begin{aligned}
& 2 \sin ^3 x+2 \sin x \cos ^2 x+4 \sin x-4=0 \\
& \cos ^2 x=1-\sin ^2 x \\
& 2 \sin ^3 x+2 \sin x\left(1-\sin ^2 x\right)+4 \sin x-4=0 \\
& 2 \sin ^3 x+2 \sin x-2 \sin ^3 x+4 \sin x-4=0 \\
& 6 \sin x-4=0 \\
& 6 \sin x=4
\end{aligned}
$
sin x =$2/3$
$
\begin{aligned}
& x^2+5 x+2=0 \\
& \mathrm{a}, \mathrm{b}=\frac{-5 \pm \sqrt{17}}{2} \text { both negative hence }(- \text { infinity, } 0)
\end{aligned}
$
Hence, the answer is ( - infinity, 0 )
Example 5: The area of the circle in which a chord of length $\sqrt{2}$ makes an angle $\pi / 2$ at the center is
Solution: Let AB be the chord of length, O be the center of the circle, and let OC be the perpendicular from O on AB .
Then $\mathrm{AC}=\mathrm{BC}=\sqrt{2} / 2=1 / \sqrt{2}$
$
\text { In } \triangle O B C, \mathrm{OB}=\mathrm{BC} \operatorname{cosec} 450=(1 / \sqrt{2}) \times \sqrt{2}=1
$
Area of the circle $=(\mathrm{OB}) 2=\pi$
Hence, the answer is $\pi$
When two sides a, b, and an angle opposite to one of these sides is given (say angle A is given). Using the sine rule, we get
$
\sin B=\frac{b}{a} \sin A
$
The formula to calculate the area of the triangle is given by the Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$ where $2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
When two sides (say a, b) and included angle (angle C) of a triangle are given by $c^2=a^2+b^2-2 a b \operatorname{Cos} C$
When three sides ( $a, b$, and c) of a triangle are given
$
\cos A=\frac{b^2+c^2-a^2}{2 b c}
$
The other side of a triangle if 2 angles and one side is given by $b=\frac{\sin B}{\sin A} a$ and $c=\frac{\sin B}{\sin A} a$
15 Feb'25 10:27 AM
15 Feb'25 09:37 AM
13 Feb'25 08:57 PM
13 Feb'25 08:40 PM
13 Feb'25 08:07 PM
13 Feb'25 08:01 PM
13 Feb'25 07:58 PM
13 Feb'25 07:56 PM
13 Feb'25 07:49 PM
13 Feb'25 07:46 PM