Imagine you’re trying to untangle a set of earphones that got hopelessly knotted in your pocket - the trick is to find the right point to start pulling. Similarly, in calculus, the Integration by Substitution method helps “untangle” complex integrals by substituting a tricky part of the expression with a simpler variable. This powerful technique transforms complicated functions into easier forms, making integration more manageable. In this article, we’ll explore the definition, formula, and step-by-step examples of the substitution method to help you understand how and when to apply it effectively in different types of problems in mathematics.
This Story also Contains
The method of substitution is one of the most powerful and commonly used techniques in integration. It helps convert a complicated integral into a simpler one by changing the variable of integration. This is particularly helpful for composite functions, where direct integration is difficult.
For example, the integral $ \int \sin(3x + 2) , dx $ may look tricky at first glance — but using substitution, we can set $ t = 3x + 2 $, which makes it straightforward to integrate.
Let $f$ be a function of $x$ defined on the closed interval $[a, b]$, and let $F$ be another function such that
$\frac{d}{dx}(F(x)) = f(x)$
for all $x$ in the domain of $f$. Then,
$\int_a^b f(x)\, dx = [F(x)]_a^b = F(b) - F(a)$
is called the definite integral of the function $f(x)$ over the interval $[a, b]$, where $a$ is the lower limit and $b$ is the upper limit of integration.
Find the indefinite integral $\int f(x), dx$ and let the result be $F(x)$.
Evaluate $F(b)$ and $F(a)$.
The definite integral is then obtained as $\int_a^b f(x)\, dx = F(b) - F(a)$
This process helps find the net area under the curve of $f(x)$ between $x = a$ and $x = b$.
When an integral involves a composite function, substitution is often the easiest way to simplify it.
Suppose you have an integral of the form
$I = \int f(g(x)) \cdot g'(x)\, dx$
where $g(x)$ is a continuously differentiable function.
Let $t = g(x)$, so $dt = g'(x), dx$.
After substitution, the integral becomes
$I = \int f(t)\, dt$
Integrate with respect to $t$, then substitute back $t = g(x)$ to get the final answer in terms of $x$.
Some useful formulas derived using integration by substitution are:
$\int \frac{f'(x)}{f(x)}, dx = \log_e |f(x)| + C$
$\int f'(x),(f(x))^n, dx = \frac{(f(x))^{n+1}}{n+1} + C$
These results are particularly handy for solving complex integrals quickly.
If $\int f(x), dx = F(x) + C$ and $a, b$ are constants, then
$\int f(ax + b)\, dx = \frac{1}{a} F(ax + b) + C$
Let $I = \int f(ax + b)\, dx$
Substitute $t = ax + b$, then $dt = a, dx$ or $dx = \frac{dt}{a}$.
Hence, $I = \frac{1}{a} \int f(t)\, dt = \frac{1}{a} F(t) + C = \frac{1}{a} F(ax + b) + C$
Examples of Integration by Substitution
$\int \cos 2x, dx = \frac{1}{2} \sin 2x + C$
$\int \frac{1}{x+1}, dx = \log_e |x+1| + C$
$\int e^{2x - 3}, dx = \frac{1}{2} e^{2x - 3} + C$
Each of these examples uses substitution to make the integral straightforward.
Trigonometric functions like $\tan x$, $\cot x$, $\sec x$, and $\csc x$ can also be integrated using the rule
$\int \frac{f'(x)}{f(x)}\, dx = \log |f(x)| + C$
$\int \tan x\, dx = \int \frac{\sin x}{\cos x}\, dx$
Let $f(x) = \cos x$, then $f'(x) = -\sin x$.
So, $\int \tan x\, dx = -\log |\cos x| + C = \log |\sec x| + C$
$\int \cot x\, dx = \int \frac{\cos x}{\sin x}\, dx = \log |\sin x| + C$
$\int \sec x\, dx = \log |\sec x + \tan x| + C$
$\int \csc x\, dx = \log |\csc x - \cot x| + C$
Here are some of the most important and commonly used formulas:
$\int x^n, dx = \frac{x^{n+1}}{n+1} + C$, where $n \neq -1$
$\int \sin x, dx = -\cos x + C$
$\int \cos x, dx = \sin x + C$
$\int e^x, dx = e^x + C$
$\int \frac{1}{x}, dx = \log |x| + C$
If $x$ is replaced by a linear function of $x$, say $(ax + b)$, then:
$\int f(ax + b)\, dx = \frac{F(ax + b)}{a} + C$
Integration by substitution helps simplify composite or nested functions.
Identify an inner function $g(x)$ and replace it with a new variable $t$.
After integrating, substitute back the original expression.
This method is highly effective for trigonometric, exponential, and rational integrals.
Mastering substitution is essential for understanding advanced techniques like integration by parts and reduction formulas.
Example 1: If $\int \frac{d x}{\cos ^3 x \sqrt{2 \sin 2 x}}=(\tan x)^A+C(\tan x)^B+k$, where $k$ is a constant of integration, then $A+B+C$ equals:
1) $\frac{21}{5}$
2) $\frac{16}{5}$
з) $\frac{7}{10}$
4) $\frac{27}{10}$
Solution
As learnt in the concept of Integration by substitution -
$\begin{aligned}
& \int \frac{d x}{\cos ^3 x \sqrt{2 \sin x \cos x \times 2}} \\
& =\frac{1}{2} \int \frac{\sec ^4 x d x}{\sqrt{\tan x}} \\
& =\frac{1}{2} \int \frac{\left(1+\tan ^2 x\right) \sec ^2 x d x}{\sqrt{\tan x}} \\
& =\frac{1}{2} \int(\tan x)^{\frac{-1}{2}} \sec ^2 x d x+\frac{1}{2} \int(\tan x)^{\frac{3}{2}} \sec ^2 x d x \\
& =\frac{1}{2} \frac{(\tan x)^{\frac{1}{2}}}{\frac{1}{2}}+\frac{1}{2} \frac{(\tan x)^{\frac{5}{2}}}{\frac{5}{2}}+C \\
& A=\frac{1}{2} ; B=\frac{5}{2} ; C=\frac{1}{5} \\
& A+B+C=3+\frac{1}{5} \\
& =\frac{16}{5}
\end{aligned}$
Hence, the answer is the option 2.
Example 2: The integral $\int \frac{d x}{(1+\sqrt{x}) \sqrt{x-x^2}}$ is equal to: (where C is a constant of integration.)
1) $-2 \sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}}+C$
2) $-2 \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}+C$
3) $-\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}+C$
4) $\sqrt[2]{\frac{1+\sqrt{x}}{1-\sqrt{x}}}+C$
Solution
$\begin{aligned} & \sin x=t \Rightarrow \cos x d x=d t \\ & \int \frac{d t}{t^2\left(1+t^6\right)^{2 / 3}}=\int \frac{d t}{t^3 t^4\left(\frac{1}{t^t}+1\right)^{2 / 3}} \\ & u=\frac{1}{t^6}+1 \Rightarrow d u=-\frac{6}{t^7} d t \\ & \frac{d u}{-6}=\frac{d t}{t^7} \\ & =\int \frac{d u}{-6 u^{2 / 3}}=-\frac{1}{2} u^{1 / 3}+C \\ & =-\frac{1}{2}\left(\frac{1}{t^6}+1\right)^{1 / 3}+C \\ & =-\frac{1}{2}\left(\frac{\left(1+\sin ^6 x\right)^{1 / 3}}{\sin ^2 x}\right) \\ & f(x)=-\frac{1}{2} \frac{1}{\sin ^2 x} \quad \lambda=3 \\ & \lambda f(\pi / 3)=-2\end{aligned}$
Hence, the answer is the option 4.
Example 3: The integral $\int \frac{d x}{(x+4)^{8 / 7}(x-3)^{6 / 7}}$ is equal to: (where C ia a constant of integration)
1) $-\left(\frac{x-3}{x+4}\right)^{-1 / 7}+C$
2) $\frac{1}{2}\left(\frac{x-3}{x+4}\right)^{3 / 7}+C$
3) $\left(\frac{x-3}{x+4}\right)^{1 / 7}+C$
4) $-\frac{1}{13}\left(\frac{x-3}{x+4}\right)^{-13 / 7}+C$
Solution
$\int\left(\frac{x-3}{x+4}\right)^{\frac{-6}{7}} \frac{1}{(x+4)^2} d x$
Let $\frac{x-3}{x+4}=t^7$
$\begin{aligned}
& \frac{7}{(x+4)^2} d x=7 t^6 d t \\
& \int t^{-6} t^6 d t=t+c \\
& \left(\frac{x-3}{x+4}\right)^{\frac{1}{4}}+c
\end{aligned}$
Hence, the answer is the option 3.
Example 4: The integral $\int \frac{e^{3 \log _e 2 x}+5 e^{2 \log _e 2 x}}{e^{4 \log _e x}+5 e^{3 \log _c x}-7 e^{2 \log _e x}} d x, x>0 \quad$ is equal to : (where c is a constant of integration)
1) $\log _c\left|x^2+5 x-7\right|+c$
2) $4 \log _e\left|x^2+5 x-7\right|+c$
3) $\frac{1}{4} \log _e\left|x^2+5 x-7\right|$
4) $\log _e \sqrt{x^2+5 x-7}+c$
Solution
$\begin{aligned} & e^{\log a^x}=x \log a \\ & e^{\log _x}=x \\ & \text { Let } \mathrm{I}=\int \frac{\mathrm{e}^{3 \log _e 2 \mathrm{x}}+5 \mathrm{e}^{2 \log _e 2 \mathrm{x}}}{\mathrm{e}^{4 \log _e \mathrm{x}}+5 \mathrm{e}^{3 \log _{\mathrm{e}} \mathrm{x}}-7 \mathrm{e}^{2 \log _{\mathrm{e}} \mathrm{x}}} \mathrm{dx}, \mathrm{x}>0 \\ & \mathrm{I}=\int \frac{\mathrm{e}^{\log _e(2 x)^3}+5 \mathrm{e}^{\log _e(2 x)^2}}{\mathrm{e}^{\log _e \mathrm{x}^4}+5 \mathrm{e}^{\log _e \mathrm{x}^3}-7 \mathrm{e}^{\log _e \mathrm{x}^2}} \mathrm{dx} \\ & I=\int \frac{(2 x)^3+5(2 x)^2}{x^4+5 x^3-7 x^2} d x=\int \frac{4 x^2(2 x+5)}{x^2\left(x^2+5 x-7\right)} d x \\ & \text { put } x^2+5 x-7=t \Rightarrow(2 x+5) d x=d t \\ & I=4 \int \frac{d t}{t}=4 \ln |t|=4 \ln \left|x^2+5 x-7\right|\end{aligned}$
Hence, the answer is the option 2.
This section outlines the key topics related to the integration by substitution method, helping you understand its complete scope and related concepts.
Integral of Particular Functions
Access all the essential NCERT materials, including notes, solutions, and exemplars, to strengthen your understanding of integration concepts.
NCERT Class 12 Maths Notes for Chapter 7 - Integrals
NCERT Class 12 Maths Solutions for Chapter 7 - Integrals
NCERT Class 12 Maths Exemplar Solutions for Chapter 7 - Integrals
Strengthen your understanding with practice questions designed to test the application of the substitution method in various integral problems.
Integration By Substitution- Practice Question MCQ
We have provided below the practice questions related to different concepts of integration to improve your understanding:
Frequently Asked Questions (FAQs)
The general formula for integration by substitution is:
$\int f(g(x))g'(x)\,dx = \int f(t)\,dt$
where $t = g(x)$ and $dt = g'(x),dx$. After integration, you substitute back $t = g(x)$ to get the result in terms of $x$.
Common examples include:
$\int \cos(2x),dx = \frac{1}{2}\sin(2x) + C$
$\int e^{3x},dx = \frac{1}{3}e^{3x} + C$
$\int \frac{1}{x+1},dx = \log_e|x+1| + C$
Each of these uses substitution to simplify the integrand before integrating.
In direct integration, you apply standard formulas like $\int x^n,dx = \frac{x^{n+1}}{n+1} + C$.
In integration by substitution, you first change the variable to simplify the expression. Substitution is essentially the reverse of the chain rule, while direct integration handles simpler, standalone functions.
The other name for integration by substitution method is the Reverse Chain Rule or U-substitution method
Integration is the reverse process of differentiation.
An indefinite integral, also known as an antiderivative, is a function that reverses the process of differentiation.