Careers360 Logo
Limits of Trigonometric Functions

Limits of Trigonometric Functions

Edited By Komal Miglani | Updated on Feb 02, 2025 08:48 PM IST

Limits are one of the most basic ideas in calculus, where one can learn how functions behave as they approach particular points. The application of the Trigonometric Limits can calculate the limits of these functions according to the continuity of the function, considering the function of the trigonometric equation. In real life, we use trigonometric equations for making roof inclination, installing ceramic tiles,building and navigating directions and lot more.

This Story also Contains
  1. Trigonometric Limits
  2. Solved Examples Based On Trigonometric Limits
  3. Summary
Limits of Trigonometric Functions
Limits of Trigonometric Functions

In this article, we will cover the concept of the Trigonometric Limits. This topic falls under the broader category of Calculus, which is a crucial chapter in Class 11 Mathematics. This is very important not only for board exams but also for competitive exams, which even include the Joint Entrance Examination Main and other entrance exams: SRM Joint Engineering Entrance, BITSAT, WBJEE, and BCECE. A total of twenty-seven questions have been asked on this topic in JEE Main from 2013 to 2023 including one in 2013, three in 2014, two in 2015, one in 2016, one in 2017, two in 2019, two in 2020, seven in 2021, six in 2022 and two in 2023.

Background wave

Trigonometric Limits

Trigonometric equations are, as the name implies, equations that involve trigonometric functions. Trigonometric equations are satisfied only for some values (finite or infinite in number) of the angles.

The following facts about functions in general come in handy in calculating the trigonometric functions:

Theorem 1: Let f and g be two real valued functions with the same domain such that f(x)g(x)for all x in the domain of definition, For some a, if both limxaf(x) and limxag(x) exist, then limxaf(x)limxag(x)

Theorem 2: In the trigonometric limit, apart from using the method of direct substitution, factorization, and rationalization (same as given in algebraic limits), we can use the following formula.

(i) limx0sinxx=1
(ii) limx0tanxx=1

As limx0tanxx=limx0sinxx×1cosx

=limx0sinxx×limx01cosx=1×1

(iii) limxasin(xa)xa=1

As limxasin(xa)xa=limh0sin((a+h)a)(a+h)a

=limh0sinhh=1

(iv) limxatan(xa)xa=1
(v) limxasin(f(x))f(x)=1, if limxaf(x)=0

Similarly, limxatan(f(x))f(x)=1, if limxaf(x)=0
(vi) limx0cosx=1
(vii) limx0sin1xx=1

As limx0sin1xx=limy0ysiny[sin1x=y]
=1
(viii) limx0tan1xx=1

Recommended Video Based on Trigonometric Limits


Solved Examples Based On Trigonometric Limits

Example 1: limx0(1cos2x)22xtanxxtan2x is [JEE Main 2016]
1) 2
2) 12
3) 12
4) 2

Solution:

limx0(1cos2x)22xtanxxtan2xlimx04sin4xx(2tanxtan2x)1cos2x=2sin2xlimx04(sinxx)4x3(2tanxtan2x)=limx04x3(2tanxtan2x)limx0sinxx=1

Now use series expansion

limx04x3(2tanxtan2x)limx04x22(x+x33+2x515+)(2x+(2x)33+2(2x)515+)limx04x32x+2x33+4x515+2x8x3364x515limx0423+4x215+8364x215limx042383=2 Hence, the answer is the option 1.

Example 2:

limx0xcot(4x)sin2xcot2(2x) is equal to :
[JEE Main 2019]
1) 1
2) 2
3) 4
4) 0

Solution:

Evalution of Trigonometric limit -

limxasin(xa)xa=1limxatan(xa)xa=1

put x=a+h where h0
Then it comes

limh0sinhh=limh0tanhh=1limx0sinxx=1 and limx0tanxx=1limx0xcot4xsin2xcot22x=limx0xtan22xsin2xtan4x=limx0x(tan22x4x2)×4x2sin2xx2×x2(tan4x4x)×4x=1
(limz0)tanzz=1(limz0)sinzz=1 Hence, the answer is the option 1.

Example 3: limxπ2cotxcosx(π2x)3 equals:
[JEE Main 2017]
1) 116
2) 18
3) 14
4) 124

Solution:

limxπ2cotxcosx(π2x)3 Put x=π2hlimh0cot(π2h)cos(π2h)[π2(π2h)]3limh0tanhsinh(ππ+2h)3limh0tanh(1cosh)8h318limh0tanhh2sin2h2h218limh0tanhh2sin2h24(h2)218×1×12=116 Hence, the answer is the option 1.

Example 4: limx0(1cos2x)(3+cosx)xtan4x is equal to :

[JEE Main 2013]
1) 2
2) 0.25
3) 0.5
4) 1

Solution:

limx0(1cos2x)(3+cosx)xtan4xlimx02sin2x(3+cosx)4x2tan4x4x=12×4=2

Hence, the answer is the option (1).

Example 5 : If α is the positive root of the equation, p(x)=x2x2=0, then limxα+1cos(p(x))x+α4 is equal to: [JEE Main 2020]
32
2) 32
3) 12
4) 1

Solution:

x2x2=0 roots are 2&1limx2+1cos(x2x2)(x2)=limx2+2sin2(x2x2)2(x2)=limx2+2sin((x2)(x+1)2)(x2)=32 Hence, the answer is an option (2). 

Summary

In conclusion, By applying the Law of Sines, the Law of Cosines, and other relevant formulas, one can systematically find all the limits as The concept of limit is the cornerstone on which the development of calculus rest.


Frequently Asked Questions (FAQs)

1. What is trigonometric equations?

 Trigonometric equations are equations that involve trigonometric functions.

2. From which method trigonometric equation can be solved?

A trigonometric equation can be solved using the method of direct substitution, factorization, and rationalization.

3. What is the sine rule of trigonometric limit?

Sine rule for trigonometric limit is limx0sinxx=1.

4. What is the cos rule of trigonometric limit?

Cos rule for trigonometric limit is limx0cosx=1

5. What is the Tan rule of trigonometric limit?

Tan rule for trigonometric limit is limx0tanxx=1

Articles

Back to top