Functions are one of the basic concepts in mathematics that have numerous applications in the real world. Be it mega skyscrapers or super-fast cars, their modeling requires practical application of functions. Almost all real-world problems are formulated, interpreted, and solved using functions. Modulus functions help in solving modulus inequalities.
JEE Main 2025: Sample Papers | Mock Tests | PYQs | Study Plan 100 Days
JEE Main 2025: Maths Formulas | Study Materials
JEE Main 2025: Syllabus | Preparation Guide | High Scoring Topics
In this article, we will cover the concepts of the modulus function. This concept falls under the broader category of sets relation and function, a crucial Chapter in class 11 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination (JEE Main), and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more.
The modulus function can be defined as a function $f: R \rightarrow R$ defined by $f(x)=|x|$ for each $x \in R$.
For each non-negative value of $x, f(x)$ is equal to $x$. But for negative values of $x$, the value of $f(x)$ is the negative of the value of $x$
$|\mathrm{x}|, \mathrm{x} \in \mathbb{R}=\left\{\begin{array}{cc}x, & x \geq 0 \\ -x, & x<0\end{array}\right.$
Range $\in[0, \infty)$
A modulus function gives the magnitude of a number irrespective of its sign.It also gives us the output as negative if the value of function that we input is less that zero. Hence it is also called the absolute value function. In mathematics, the modulus of a real number $x$ is given by the modulus function, denoted by $|x|$.
$|x|$ is the modulus of $x$, where $x$ is a real number. If $x$ is non-negative then $f(x)$ will be of the same value $x$. If $x$ is negative, then $f(x)$ will be the magnitude of $x$, that is, $\mathrm{f}(\mathrm{x})=-\mathrm{x}$ if $x$ is negative.
We see how to plot the graph for a modulus function. Let us consider $x$ to be a variable, taking values from $-5$ to $5$. Calculating modulus for the positive values of ' $x$ ', the line plotted in the graph is ' $y=x$ ' and for the negative values of ' $x$ ', the line plotted in the graph is ' $y=-x^{\prime}$.
x | f(x) = |x| |
---|---|
-5 | 5 |
-4 | 4 |
-3 | 3 |
-2 | 2 |
-1 | 1 |
0 | 0 |
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
Modulus Equations: Properties
If $a>0$
1. $|x|=a$, then $x=a,-a$
2. $|x|=|-x|$
3. $|x|^2=x^2$
4. If $|\mathrm{x}|=\mathrm{x}$, then $\mathrm{x}>0$ or $\mathrm{x}=0$
5. If $|x|=-x$, then $x<0$ or $x=0$
6. $|f(x)|=|g(x)|$, then $f(x)=g(x)$ or $f(x)=-g(x)$
The modulus function $f(x)=|x|$ can be applied to any real number. i.e., its input can be any real number and hence can be said that its domain is the set of all real numbers $(\mathbb{R})$. The output of the modulus function is always a of non-negative real number and
We should also take care that the domain of a modulus function $f(x)$ $=\mathrm{a}|\mathrm{x}-\mathrm{h}|+\mathrm{k}$ is still $\mathbb{R}$ but its range varies on the values of '$a$' and '$k$'. Its range is
Modulus inequalities
These deal with the inequalities ( $<,>, \leq, \geq$ ) on expressions with absolute value sign.
Properties
If $a, b>0$, then
1. $
\begin{aligned}
& |\mathrm{x}| \leq \mathrm{a} \Rightarrow \mathrm{x}^2 \leq \mathrm{a}^2 \\
& \Rightarrow-\mathrm{a} \leq \mathrm{x} \leq \mathrm{a}
\end{aligned}
$
2. $
\begin{aligned}
& |\mathrm{x}| \geq \mathrm{a} \Rightarrow \mathrm{x}^2 \geq \mathrm{a}^2 \\
& \Rightarrow \mathrm{x} \leq-\mathrm{a} \text { or } \mathrm{x} \geq \mathrm{a}
\end{aligned}
$
3. $
\begin{aligned}
& \mathrm{a} \leq|\mathrm{x}| \leq \mathrm{b} \Rightarrow \mathrm{a}^2 \leq \mathrm{x}^2 \leq \mathrm{b}^2 \\
& \Rightarrow \mathrm{x} \in[-\mathrm{b},-\mathrm{a}] \cup[\mathrm{a}, \mathrm{~b}]
\end{aligned}
$
4. $|x+y|=|x|+|y| \Leftrightarrow x y \geq 0$.
5. $|x-y|=|x|-|y| \Rightarrow x \cdot y \geq 0$ and $|x| \geq|y|$
6. $|x \pm y| \leq|x|+|y|$
7. $|x \pm y| \geq||x|-|y||$
Since we know that a modulus function $f(x)=|x|$ is equal to $x$ if $x>0$ and $-x$ if $x<0$, hence the derivative of modulus function is 1 if $x>0$ and -1 if $x<0$. The derivative of the modulus function is NOT defined for $x=0$. Hence the derivative of modulus function can be written as $\frac{d(|x|)}{d x} = \frac{x}{|x|}$, for all values of $x$ and $x \neq 0$.
Using the formula of the modulus function and integration formulas, the integral of the modulus function is $(\frac{1}{2}) x^2+C$ if $x \geq 0$, and its integral is $-(1 / 2) x^2+C$ if $x<0$. Hence the integration of the modulus function can be clubbed as:
Example 1: If $f(x)=3|x|$ . Then the range of $f(x)$ is
1) $[0, \infty)$
2) $[3, \infty)$
3) $R$
4) $[1, \infty)$
Solution:
We can find a range of $|x|$ by simple manipulation
As $0 \leq|x|<\infty$
Multiplying all 3 sides by 3
$0 \leq 3|x|<\approx$
So, the range is the same i.e $[0, \infty)$
Hence, the answer is the option 1.
Example 2: If $f(x)=-|x|+9$. Then the range of $\mathrm{f}(\mathrm{x})$ is
1) $[8, \infty)$
2) $(9, \infty)$
3) $(-\infty, 0)$
4) $(-\infty, 9]$
Solution:
We can find the range of $|x|$ by simple manipulation
$
\text { As } 0 \leq|x|<\infty
$
multiply all 3 sides by $(-1)$
$
-\infty<-|x| \leq 0
$
Now, adding 9 to all 3 sides
$
-\infty<-|x|+9 \leq 9
$
So, the range is $(-\infty, 9]$
Hence, the answer is the option 4.
Example 3: If $f(x)=|x|+x$, then what is the range of $\mathrm{f}(\mathrm{x})$ ?
1) $[0, \infty 0)$
2) $R$
3) $\{0\}$
4) $(-\infty, 0]$
Solution:
Case 1: If $x \geq 0 ; f(x)=x+x=2 x$
In this case, $x \geq 0$
Multiplying both sides by $2,2 x \geq 0$
Case 2: If $x<0 ; f(x)=-x+x=0$
Hence range $=[0, \infty)$
Hence, the answer is the option 1.
Example 4: The number of real solutions of the equation, $x^2-|x|-12=0$ is:
Solution:
Let $|x|=t$
$\Rightarrow t^2-t-12=0$
Example 5: If $\left|x^2-9\right|+\left|x^2-4\right|=5$, then the set of values of x is:
1) $(-\infty,-3) \cup(3, \infty)$
2) $(-\infty,-2) \cup(3, \infty)$
3) $(-\infty, 3)$
4) $[-3,-2] \cup[2,3]$
Solution:
$\begin{aligned}
& \left|x^2-9\right|+\left|x^2-4\right|=5 \\
& \left|x^2-9\right|+\left|x^2-4\right|=\left|\left(x^2-9\right)-\left(x^2-4\right)\right| \\
& \{\because|a|+|b|=|a-b| \Leftrightarrow a . b \leq 0\}
\end{aligned}$
So, $\left(x^2-9\right)\left(x^2-4\right) \leq 0$
$x \in[-3,-2] \cup[2,3]$
$\Rightarrow(t-4)(t+3)=0$
$\Rightarrow t=4$ or $t=-3$
$\Rightarrow|x|=4$ or $|x|=-3$
$\Rightarrow x=4,-4$ or $x \epsilon \phi$
$\Rightarrow x=4,-4$
Hence, the answer is 2.
Hence, the answer is the option (4).
The modulus function, denoted as $|x|$, gives the absolute value of a number $x$. It is defined as:
- $|x|=x$ if $x \geq 0$
- $|x|=-x$ if $x<0$
The graph of $y=|x|$ is a V-shaped graph that intersects the origin $(0,0)$. For $x \geq 0$, it is the line $y=x$, and for $x<0$, it is the line $y=-x$.
For a complex number $z=a+b i$ (where $a$ and $b$ are real numbers and $i$ is the imaginary unit), the modulus is $|z|=\sqrt{a^2}+b^2$
The terms "modulus" and "absolute value" are often used interchangeably when referring to real numbers. However, "modulus" is more commonly used in the context of complex numbers, whereas "absolute value" is typically used for real numbers.
Yes, the modulus function is used in calculus, especially in dealing with limits, integrals, and series. The properties of the modulus function can simplify the analysis of the behavior of functions and sequences.
18 Dec'24 02:25 AM
18 Dec'24 01:28 AM
26 Nov'24 11:39 AM
26 Nov'24 11:07 AM
26 Nov'24 11:04 AM
24 Nov'24 03:17 AM
23 Nov'24 10:42 AM
15 Oct'24 01:44 PM
12 Oct'24 12:12 PM
12 Oct'24 12:06 PM