Random Variables and its Probability Distributions

Random Variables and its Probability Distributions

Edited By Komal Miglani | Updated on Oct 15, 2024 01:24 PM IST

Random Variable and probability distribution are important concepts of probability. If the value of a random variable together with the corresponding probabilities are given then this description is called a probability distribution of the random variable. These concepts help the analyst analyze the decisions in various fields like science, commerce, etc.

Random Variables and its Probability Distributions
Random Variables and its Probability Distributions

Random Variable

A random variable is a real-valued function whose domain is the sample space of a random experiment. It is a numerical description of the outcome of a statistical experiment.
A random variable is usually denoted by $X$.
For example, consider the experiment of tossing a coin two times in succession. The sample space of the experiment is $S=\{H H, H T, T H, T T\}$.
If $X$ is the number of tails obtained, then $X$ is a random variable and for each outcome, its value is given as

$
X(T T)=2, X(H T)=1, X(T H)=1, X(H H)=0
$


Types Of Random Variables:
1. Discrete Random Variable: Discrete random variable can take finite unique variables.
2. Continuous Random Variable: A continuous random variable can take infinite no. of values in a range.

Probability Distribution of a Random Variable
The probability distribution for a random variable describes how the probabilities are distributed over the values of the random variable.
The probability distribution of a random variable $X$ is the system of numbers

$
\begin{array}{rlllllll}
X & : & x_1 & x_2 & x_3 & \ldots & \ldots & x_n \\
P(X) & : & p_1 & p_2 & p_3 & \ldots & \ldots & p_n \\
& p_i \neq 0, & \sum_{i=1}^n p_i=1, & i=1,2,3, \ldots n
\end{array}
$

The real numbers $\underline{\underline{x_1},}, x_2, \ldots, x_n$ are the possible values of the random variable $X$ and $p_i(i=1,2, \ldots, n)$ is the probability of the random variable $X$ taking the value $x i$ i.e., $P\left(X=x_i\right)=p_i$
Types Of Probability Distribution:
1. Binomial distribution
2. Normal Distribution
3. Cumulative distribution frequency

The mean of a Random Variable
Let X be a random variable whose possible values $\underline{\mathrm{x}_1}, \underline{\mathrm{x}_2}, \ldots, \mathrm{x}_{\mathrm{n}}$ occur with probabilities $\underline{\underline{p_1}}, \underline{\mathrm{p}_2}, \underline{\mathrm{p}_3}, \ldots, \mathrm{p}_{\mathrm{n}}$, respectively. The mean of X , denoted by $\mu$, is the number $\sum_{i=1}^n x_i p_i$ i.e. the mean of X is the weighted average of the possible values of $X$, each value being weighted by its probability with which it occurs.

The mean of a random variable X is also called the expectation of X , denoted by $\mathrm{E}(\mathrm{X})$.

\begin{array}{|c|c|c|} \hline \mathrm{Random\;variable\;\;\left (x_i \right )} & \mathrm{Probability\;\;\left (p_i \right )} & \mathrm{p_ix_i} \\ \hline \mathrm{x_{1 }} & {\mathrm{p}_{1}} & {\mathrm{p}_{1} \mathrm{x}_{1}} \\ \hline \mathrm{x_{2 }} & {\mathrm{p}_{2}} & {\mathrm{p}_{2} \mathrm{x}_{2}} \\ \hline \mathrm{x_{3 }} & {\mathrm{p}_{3}} & {\mathrm{p}_{3} \mathrm{x}_{3}} \\ \hline \ldots & \ldots & \ldots \\ \hline \ldots & \ldots & \ldots \\ \hline \mathrm{x_{n}} & {\mathrm{p}_{n}} & {\mathrm{p}_{n} \mathrm{x}_{n}} \\ \hline\end{array}

Thus,

$
\operatorname{mean}(\mu)=\frac{\sum_{i=1}^n p_i x_i}{\sum_{i=1}^n p_i}=\sum_{i=1}^n x_i p_i \quad\left(\because \sum_{i=1}^n p_i=1\right)
$


Variance of a random variable
Let $X$ be a random variable whose possible values $x_1, x_2, \ldots, x_n$ occur with probabilities $p\left(x_1\right), p\left(x_2\right), \ldots, p\left(x_n\right)$ respectively.
Let $\mu=\mathrm{E}(\mathrm{X})$ be the mean of X . The variance of X , denoted by $\operatorname{Var}(\mathrm{X})$ or $\sigma_x^2$ is defined as

$
\sigma_x^2=\operatorname{Var}(\mathrm{X})=\sum_{i=1}^n\left(x_i-\mu\right)^2 p\left(x_i\right)
$

And the non-negative number

$
\sigma_x=\sqrt{\operatorname{Var}(\mathrm{X})}=\sqrt{\sum_{i=1}^n\left(x_i-\mu\right)^2 p\left(x_i\right)}
$

is called the standard deviation of the random variable $\mathbf{X}$. Mastery of these concepts can help in solving gaining deeper insights and contributing meaningfully to real-life problems.

Solved Examples Based on Random Variable and Probability Distribution:

Example 1: Each of the two persons $A$ and $B$ toss a fair coin simultaneously 50 times. The probability that both of them will not get head at the same toss is
1) $\left(\frac{3}{4}\right)^{50}$
2) $\left(\frac{2}{7}\right)^{50}$
3) $\left(\frac{1}{8}\right)^{50}$
4) $\left(\frac{7}{8}\right)^{50}$

Solution
Probability of Distribution of the Random Variable -
If the value of a random variable together with the corresponding probabilities are given then this description is called a probability distribution of the random variable.
At any trial, four cases arise
(i) both $A$ and $B$ get head
(ii) $A$ gets head, $B$ gets tail
(iii) $A$ gets tail, $B$ gets head
(iv) both get tail

$P$ (they do not get head simultaneously on a particular trail $=\frac{3}{4}$
$P($ they do not get heads simultaneously in 50 trials $)=\left(\frac{3}{4}\right)^{50}$

Hence, the answer is option 1.

Example 2: Two numbers are selected at random (without replacement) from the first six positive integers. If $X$ denotes the smaller of the two numbers, then the expectation of $X$ is :
1) $\frac{5}{3}$
2) $\frac{14}{3}$
3) $\frac{13}{3}$
4) $\frac{7}{3}$

Solution
The two positive integers can be selected from the first six positive integers without replacement in $6 \times 5=30$ ways.
$X$ represents the larger of the two numbers obtained. Therefore, $X$ can take the value of $2,3,4,5$, or 6 .
For $X=2$, the possible observations are $(1,2)$ and $(2,1)$.

$
\therefore P(X=2)=\frac{2}{30}=\frac{1}{15}
$

For $X=3$, the possible observations are $(1,3),(2,3),(3,1)$, and $(3,2)$.

$
\therefore P(X=3)=\frac{4}{30}=\frac{2}{15}
$

For $X=4$, the possible observations are $(1,4),(2,4),(3,4),(4,3),(4,2)$, and $(4,1)$.

$
\therefore P(X=4)=\frac{6}{30}=\frac{1}{5}
$

For $\mathrm{X}=5$, the possible observations are $(1,5),(2,5),(3,5),(4,5),(5,4),(5,3),(5,2)$, and $(5,1)$.

$
\therefore P(X=5)=\frac{8}{30}=\frac{4}{15}
$

For $X=6$, the possible observations are $(1,6),(2,6),(3,6),(4,6),(5,6),(6,4),(6,3),(6,2)$, and $(6,1)$.

$
\therefore P(X=6)=\frac{10}{30}=\frac{1}{3}
$

Therefore, the required probability distribution is as follows.

$
\begin{aligned}
& \text { Then, } E(X)=\sum X_i P\left(X_i\right) \\
& =2 \cdot \frac{1}{15}+3 \cdot \frac{2}{15}+4 \cdot \frac{1}{5}+5 \cdot \frac{4}{15}+6 \cdot \frac{1}{3} \\
& =\frac{2}{15}+\frac{2}{5}+\frac{4}{5}+\frac{4}{3}+2 \\
& =\frac{70}{15} \\
& =\frac{14}{3}
\end{aligned}
$

Hence, the answer is the option 2.

Example 3: A random variable $X$ has the following probability distribution:

$
\begin{array}{rccccc}
X: & 1 & 2 & 3 & 4 & 5 \\
P(X): & K^2 & 2 K & K & 2 K & 5 K^2
\end{array}
$

Then $P(X>2)$ is equal to:
1) $\frac{7}{12}$
2) $\frac{23}{36}$
3) $\frac{1}{36}$
4) $\frac{1}{6}$

Solution

$
\begin{aligned}
& \sum P_i=1 \Rightarrow 6 k^2+5 k=1 \\
& \Rightarrow 6 k^2+5 k-1=0 \\
& \Rightarrow k=\frac{1}{6}, k=-1 \text { (invalid) } \\
& \text { Now, } P(X>2)=P(3)+P(4)+P(5)=k+2 k+5 k^2 \\
& =\frac{1}{6}+\frac{2}{6}+\frac{5}{36}=\frac{6+12+5}{36}=\frac{23}{36}
\end{aligned}
$

Hence, the answer is the option 2.

Example 4: A random variable $X$ has the following probability distribution:

X01234
P(X)k2k4k6k8k
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

The value of $P(1<X<4 \mid X \leq 2)$ is equal to:
1) $\frac{4}{7}$
2) $\frac{2}{3}$
3) $\frac{3}{7}$
4) $\frac{4}{5}$

Solution

X01234
P(X)k2k4k6k8k


$
\begin{aligned}
& \mathrm{k}+2 \mathrm{k}+4 \mathrm{k}+6 \mathrm{k}+8 \mathrm{k}=1 \\
& \mathrm{k}=\frac{1}{21}=\frac{\mathrm{p}(\mathrm{x}=2)}{\mathrm{p}(\mathrm{x} \leq 2)} \\
& \mathrm{P}(1<\mathrm{x}<4 / \mathrm{x} \leq 2)= \frac{4 \mathrm{k}}{\mathrm{k}+2 \mathrm{k}+4 \mathrm{k}} \\
&=\frac{4}{7}
\end{aligned}
$

Hence, the answer is the option (1).

Example 5: A six-faced die is biased such that $3 \times \mathrm{P}$ (a prime number) $=6 \times \mathrm{P}$ (a composite number) $=2 \times \mathrm{P}(1)$. Let X be a random variable that counts the number of times one gets a perfect square on some throws of this die. If the die is thrown twice, then the mean of X is
1) $\frac{3}{11}$
2) $\frac{5}{11}$
3) $\frac{7}{11}$
4) $\frac{8}{11}$

Solution
Let $\mathrm{P}(1)=\mathrm{k}$
$\therefore \quad \mathrm{P}(2)=\mathrm{P}(3)=\mathrm{P}(5)=\frac{2 \mathrm{k}}{3}$ and $\mathrm{P}(4)=\mathrm{P}(6)=\frac{\mathrm{k}}{3}$
As Sum=1

$
\begin{aligned}
& \mathrm{k}+(2 \mathrm{k})+\frac{2 \mathrm{k}}{3}=1 \\
& \Rightarrow \mathrm{k}=\frac{3}{11}
\end{aligned}
$

Now $\mathrm{n}=2$
and $\mathrm{P}=\mathrm{P}(1)+\mathrm{P}(4)=\mathrm{k}+\frac{\mathrm{k}}{3}=\frac{4 \mathrm{k}}{3}$ $=\frac{4}{11}$
$\therefore$ Mean $=\mathrm{np}=2 \times \frac{4}{11}=\frac{8}{11}$
$\therefore$ Option(D)
Hence, the answer is the option 4.

Summary
A random variable is a real-valued function whose domain is the sample space of a random experiment. It is a numerical description of the outcome of a statistical experiment. These methods are widely used in real-life applications providing insights and solutions to complex problems. Mastery of these concepts can help in solving gaining deeper insights and contributing meaningfully to real-life problems.

Frequently Asked Questions (FAQs)

1. What is a random variable?

A random variable is a real-valued function whose domain is the sample space of a random experiment. It is a numerical description of the outcome of a statistical experiment.

2. What are the types of random variables?

The types of random variables are discrete random variables and continuous random variables.

3. What are the types of probability distributions?

The types of probability distributions are Binomial distribution, Normal distribution and Cumulative distribution frequency

4. What is the mean of a random variable?

Let X be a random variable whose possible values $\underline{\mathrm{x}_1}, \underline{\mathrm{x}_2}, \ldots, \mathrm{x}_{\mathrm{n}}$ occur with probabilities $\underline{\underline{p_1}}, \underline{\mathrm{p}_2}, \underline{\mathrm{p}_3}, \ldots, \mathrm{p}_{\mathrm{n}}$, respectively. The mean of X , denoted by $\mu$, is the number $\sum_{i=1}^n x_i p_i$

5. What is the variance of a random variable?

Let $X$ be a random variable whose possible values $x_1, x_2, \ldots, x_n$ occur with probabilities $p\left(x_1\right), p\left(x_2\right), \ldots, p\left(x_n\right)$ respectively.
Let $\mu=\mathrm{E}(\mathrm{X})$ be the mean of X . The variance of X , denoted by $\operatorname{Var}(\mathrm{X})$ or $\sigma_x^2$ is defined as

$
\sigma_x^2=\operatorname{Var}(\mathrm{X})=\sum_{i=1}^n\left(x_i-\mu\right)^2 p\left(x_i\right)
$

Articles

Get answers from students and experts
Back to top