The tangent touches the curve at one point but does not cross it. So the tangent has only one point of contact. The point where the tangent line and the curve meet or intersect is called the point of tangency. In real life, we use tangents in the construction and navigation field to calculate distances, heights, and angles.
JEE Main: Study Materials | High Scoring Topics | Preparation Guide
JEE Main: Syllabus | Sample Papers | Mock Tests | PYQs
In this article, we will cover the concept of the Tangents of Parabola. This category falls under the broader category of Coordinate Geometry, which is a crucial Chapter in class 11 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination(JEE Main) and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. A total of twenty-nine questions have been asked on JEE MAINS( 2013 to 2023) from this topic including four in 2019, two in 2020, eight in 2021, six in 2022, and six in 2023.
A line that touches the parabola exactly at one point is called the tangent to a parabola.
Condition for Tangency
1. The line
2. The line
Equation of the tangent to the parabola
Equation of the tangent to the parabola
Derivation of Equation of Tangents of Parabola in Point Form
The given equation is
Differentiating with respect to
Equation of tangent at point
The equation of tangents to all standard parabolas in terms of the parameter of the point of contact and the slope of the tangents are tabulated as shown below:
Note:
The same procedure can be applied to any general equation of parabola as well
For example, the tangent to
The equation of tangent to the parabola
Derivation of Equation of Tangents of Parabola in Parametric Form
Equation of the tangent to the parabola
Equation of the tangent to the parabola
Derivation of Equation of Tangents of Parabola in Slope Form
If
put the value of
which is the equation of the tangent of the parabola in slope form.
The coordinates of the point of contact are
Note:
When the vertex of the shifted parabola is at (h, k), then replace x by (x-h) and y by (y-k) in the equations of tangents.
Two points,
Then, the equation of tangents at
Solving (i) and (ii)
we get,
Point of Intersection of tangents drawn at point
The point of Intersection of tangents drawn at points
TIP:
The locus of the point of intersection of the mutually perpendicular tangents to a parabola is the directrix of the parabola.
All the above forms of the equation of tangent can be obtained by the calculus method also in which we differentiate the equation of parabola to get the slope of the tangent to parabola at any point on it.
To find the equation of the tangent to a standard parabola, we use the standard equation of tangent. But if the equation of a parabola is not in standard form, we use the calculus method to find the equation of tangent. In this method, we differentiate the equation of the parabola to find the slope of tangent or point of contact on the parabola.
1) In any parabola, the foot perpendicular from focus upon any tangent lies on the tangent at the vertex.
2) In any parabola, the image of focus in any tangent lies on the directrix.
3) In any parabola, tangent at any point P on it bisects the angle between the focal chord through P and the perpendicular from P to the directrix.
4) In any parabola, the length of tangent between the point of contact on the curve and the point where it meets the directrix subtends the right angle at focus.
5) Tangents at extremities of a focal chord are perpendicular and intersect on the directrix. In other words, the locus of point of intersection of tangents at the extremities of the focal chord of the parabola is directrix. Or Chord of contact w.r.t. any point on the directrix of the parabola is a focal chord.
Example 1: A triangle is formed by the tangents at the point
[JEE MAINS 2023]
Solution: Tangent at
Tangent at
Slope of
Radius:
Hence, the answer is 10.
Example 2: If the tangent at a point
[JEE
MAINS 2023]
Solution
the slope of the tangent at
(2)
Comparison with (1)
Area of
Hence, the answer is
Example 3: Let
[JEE MAINS 2022]
Solution
Also,
Hence, the answer is 16
Example 4: Let
[JEE MAINS 2022]
Solution
Tangents
Using the property of a parabola, the point of contact of perpendicular tangents always forms a focal chord. So A, S, B will always be collinear for any value of a>0.
Hence the answer is any a>0
Example 5:
If a line along a chord of the circle
Solution: The line is passing through (
Any tangent to this parabola is
It passes through (-30,0)
For
Given circle is
Centre is
Distance of centre from line
Hence, the answer is
Tangents to any parabola give us an idea about the behaviour of parabola and their interaction with straight lines. Understanding tangents enhances our ability to analyze and predict the behaviour of parabolic curves, making them a fundamental concept in both theoretical mathematics and practical applications.
15 Feb'25 10:03 AM
15 Feb'25 12:45 AM
12 Feb'25 01:14 AM
12 Feb'25 01:14 AM
12 Feb'25 01:10 AM
12 Feb'25 01:08 AM
12 Feb'25 01:06 AM
12 Feb'25 01:05 AM
12 Feb'25 01:02 AM
12 Feb'25 01:01 AM