Careers360 Logo
Transcendental Function - Explanation, Equation and Examples

Transcendental Function - Explanation, Equation and Examples

Edited By Komal Miglani | Updated on Sep 09, 2024 12:52 PM IST

Transcendental function is a category of functions that cannot be expressed as finite polynomials, algebraic functions, or solutions of algebraic equations with rational coefficients. They are crucial in advanced mathematics and have applications across various scientific fields. These are non-algebraic functions.

In this article, we will cover the concepts of the transcendental function especially exponential and logarithmic functions. This concept falls under the broader category of sets relation and function, a crucial Chapter in class 11 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination (JEE Main), and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Over the last ten years of the JEE Main exam (from 2013 to 2023), a total of seven questions have been asked on this concept, including two in 2019, and five in 2023.

Define Transcendental Functions

The transcendental function can be defined as a function that is not algebraic and cannot be expressed in terms of a finite sequence of algebraic operations such as sin x.

The most familiar transcendental functions examples are the exponential functions, logarithmic functions, trigonometric functions, hyperbolic functions, and inverse of all these functions. The less familiar transcendental functions examples are Gamma, Elliptic, and Zeta functions.

Types of Transcendental function

Exponential Function: function $f(x)$ such that $f(x)=a^x$ is known as an exponential function.
base: $a>0, a \neq 1$
domain : $x \in \mathbb{R}$
range : $\mathrm{f}(\mathrm{x})>0$

Property : If $a^x=a^y$,then $x=y$

Logarithmic function: function $f(x)$ such that $f(x)=\log _a(x)$ is called logarithmic function
base: $a>0, a \neq 1$
domain : $\mathrm{x}>0$
range $: f(x) \in \mathbb{R}$

If a > 1 If 0 < a < 1

Properties of Logarithmic Function

1. $\log _e(a b)=\log _e a+\log _e b$
2. $\log _e\left(\frac{a}{b}\right)=\log _e a-\log _e b$
3. $\log _e a^{\mathrm{m}}=m \log _e a$
4. $\log _a a=1$
5. $\log _{\mathrm{b}^{\mathrm{m}}} \mathrm{a}=\frac{1}{\mathrm{~m}} \log _{\mathrm{b}} \mathrm{a}$
6. $\log _b a=\frac{1}{\log _{\mathrm{a}} \mathrm{b}}$
7. $\log _b a=\frac{\log _m a}{\log _m b}$
8. $\mathrm{a}^{\log _a m}=\mathrm{m}$
9. $\mathrm{a}^{\log _c \mathrm{~b}}=\mathrm{b}^{\log _c \mathrm{a}}$
10. $\log _{\mathrm{m}} \mathrm{a}=\mathrm{b} \Rightarrow \mathrm{a}=\mathrm{m}^{\mathrm{b}}$


Summary

Transcendental functions are essential tools in mathematics and science, extending beyond simple algebraic functions to describe more complex and varied phenomena. Their unique properties and applications make them indispensable in theoretical and applied contexts.

Solved Examples Based On the Transcendental Functions:

Example 1: What is the range of the function $f(x)=\left|a^x\right|$ ?
1) $[1, \infty)$
2) $R$
3) $R^{+}$
4) $[0, \infty)$

Solution:

$\begin{aligned}
& a^x>0 \forall x \equiv R \\
& \text { Thus }\left|a^x\right|=a^x \\
& \text { Hence }\left|a^x\right|>0 \quad \forall x \equiv R \\
& \text { i.e }\left|a^x\right| \in R^{+}
\end{aligned}$
Hence, the answer is the option 3.

Example 2: The number of real roots of the equation $5+\left|2^x-1\right|=2^x\left(2^x-2\right)$ is:
Solution:

$\begin{aligned}
& 5+\left|2^x-1\right|=2^x\left(2^x-2\right) \\
& 5+\left|2^x-1\right|=2^{2 x}-2 \cdot 2^x
\end{aligned}$


$\begin{aligned}
& \text { Case 1: } x \geq 0 \\
& =>5+2^x-1=2^{2 x}-2 \cdot 2^x \\
& =>2^{2 x}-2 \cdot 2^x-2^x-4=0 \\
& =>\left(2^x-4\right)\left(2^x+1\right)=0 \\
& =>2^x-4=0 \\
& \Rightarrow x=2
\end{aligned}$


Case 2: $x<0$

$\begin{aligned}
& 5+1-2^x=2^{2 x}-2 \cdot 2^x \\
& =>6=2^{2 x}-2^x \\
& \text { LHS }=+ \text { ve } \& \text { RHS }=- \text { ve (no solution) } \\
& \therefore \text { no. of solution }=1
\end{aligned}$

Hence, the answer is 1.
Example 3: Which of the following is the domain of $f(x)=\log _2(x+4)$
1) $(0, \infty)$
2) $(-2, \infty)$
3) $(-4, \infty)$

4) None of these

Solution:$\begin{aligned}
& \ln \log _2(x+4) ; x+4>0 \\
& \text { i.e } x>-4
\end{aligned}$


Hence, the answer is the option 3.
Example 4: If $f(x)=\log _c\left(\frac{1-x}{1+x}\right),|x|<1, \underset{\text { then }}{ } f\left(\frac{2 x}{1+x^2}\right)$ is equal to
1) $2 f\left(x^2\right)$
2) $2 f(x)$
3) $-2 f(x)$
4) $(f(x))^2$

Solution:

$\begin{aligned}
& f(x)=\log _e\left(\frac{1-x}{1+x}\right),|x|<1 \\
& f\left(\frac{2 x}{1+x^2}\right)=? \\
& f\left(\frac{2 x}{1+x^2}\right)=\log _e\left(\frac{1-\frac{2 x}{1+x^2}}{1+\frac{2 x}{1+x^2}}\right) \\
& =\log _e\left(\frac{\frac{1+x^2-2 x}{1+x^2}}{\frac{1+x^2+2 x}{1+x^2}}\right) \\
& =\log _e \frac{x^2-2 x+1}{x^2+2 x+1}=\log _e\left(\frac{(1-x)^2}{(x+1)^2}\right) \\
& =\log _e\left(\frac{1-x}{x+1}\right)^2
\end{aligned}$


$\begin{aligned}
& =2 \log _e\left(\frac{1-x}{x+1}\right),|x|<1 \\
& =2 f(x)
\end{aligned}$


Hence, the answer is the option 2.
Example 5: The number of solutions of the equation $\log _4(x-1)=\log _2(x-3)$ is
Solution:

$\begin{aligned}
& \log _4(x-1)=\log _2(x-3) \\
& \Rightarrow \frac{1}{2} \log _2(x-1)=\log _2(x-3) \\
& \Rightarrow \log _2(x-1)^{1 / 2}=\log _2(x-3) \\
& \Rightarrow \sqrt{x-1}=(x-3) \\
& \Rightarrow x-1=x^2+9-6 x \\
& \Rightarrow x^2-7 x+10=0 \\
& \Rightarrow(x-2)(x-5)=0 \\
& \Rightarrow x=2,5
\end{aligned}$

but $x$ can't be 2 , because in

$\log _2(x-3) \rightarrow x>3$


So, there is only one solution
Hence, the answer is 1 .

Frequently Asked Questions (FAQs)

1. What are transcendental functions?

Transcendental function is a category of functions that cannot be expressed as finite polynomials, or algebraic functions.

2. What are the permissible values of $a$ in $f(x)=\log _{a-2} x$ ?

Since in $f(x)=\log _{a-2} x$

$a-2>0 \text { and } a-2 \neq 1$
$\Rightarrow a>2$ and $a \neq 3$

3. In what case the logarithmic function is decreasing?

When the base of the logarithmic function lies between 0 and 1.

4. What is the condition when ax = ay?

If x=y.

5. Is the logarithmic function monotonic?

Yes

Articles

Back to top