A triangular matrix is a special kind of square matrix in math where the numbers below or above the main diagonal form a triangle shape. A matrix is just an arrangement of numbers in rows and columns. There are many kinds of matrices, including ones with just one row or one column, ones that aren't square, ones where only the diagonal has numbers and everything else is zero, ones where all numbers are zero, ones with ones on the diagonal and zeros elsewhere, and ones with this triangular pattern.
JEE Main 2025: Sample Papers | Mock Tests | PYQs | Study Plan 100 Days
JEE Main 2025: Maths Formulas | Study Materials
JEE Main 2025: Syllabus | Preparation Guide | High Scoring Topics
In this article, we will cover the concept of triangular matrices. This category falls under the broader category of Matrices, which is a crucial Chapter in class 12 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination(JEE Main) and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more.
A square matrix whose all elements above or below the principal diagonal are zero is called a Triangular. In numerical analysis, matrix equations involving triangular matrices are crucial because they are simpler to solve. If and only if all of an invertible matrix's leading main minors are non-zero, it can be expressed as the product of a lower triangular matrix L and an upper triangular matrix U using the LU decomposition matrix.
A triangular matrix is further classified into two types:
An Upper triangular matrix is denoted by Letter ‘U’
$\begin{aligned} & \text { Or } \mathrm{A}=\left[\mathrm{a}_{\mathrm{i} \mathrm{j}}\right]_{\mathrm{m} \times \mathrm{n}} \text { is said to be upper triangular if } \mathrm{A}=\left[\mathrm{a}_{\mathrm{i} \mathrm{j}}\right]_{\mathrm{m} \times \mathrm{n}}=0 \text { when } \mathrm{i}>\mathrm{j} \text {. } \\ & \qquad\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} \\ 0 & 0 & a_{33} & a_{34} & a_{35} \\ 0 & 0 & 0 & a_{44} & a_{45} \\ 0 & 0 & 0 & 0 & a_{55}\end{array}\right]\end{aligned}$
Numerous operations preserve upper triangularity:
The Lower triangular matrix is denoted by ‘L’
Or $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ is said to be upper triangular if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{i} j}\right]_{\mathrm{m} \times \mathrm{n}}=0$ when $\mathrm{i}<\mathrm{j}$.
Example,
$
\text {}\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 & 0 \\
a_{31} & a_{32} & a_{33} & 0 & 0 \\
a_{41} & a_{42} & a_{43} & a_{44} & 0 \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}\right]
$
Numerous operations preserve lower triangularity:
A (upper or lower) triangular matrix is referred to as (upper or lower) unit triangular if all of the elements on the major diagonal are 1.
Unit (upper or lower) triangular and, extremely infrequently, normed (upper or lower) triangular are other terms for these matrices. A normed triangular matrix is unrelated to the concept of matrix norm, and a unit triangular matrix is not the same as a unit matrix.
A matrix is referred to as strictly (upper or lower) triangular if every entry on the main diagonal of the matrix is likewise 0. The Cayley-Hamilton theorem states that all finite strictly triangular matrices are nilpotent of the index at most n.
Triangular matrices play a crucial role in both computational and theoretical contexts due to their simplified structure, which makes solving linear equations, computing determinants, and performing matrix factorizations more efficient. For example, algorithms such as Gaussian elimination frequently convert matrices into triangular form to simplify calculations. The unique structure and properties of triangular matrix make it suitable for use in various fields like engineering, physics, architecture, etc.
Recommended Video :
Example 1: If A is a Lower triangular matrix with the definition
$\begin{aligned} a_{i j} & =\{i-j ; \text { when } i>j \\ & =\{i+j ; \text { when } i=j \\ & =\{0 ; \text { when } i<j\end{aligned}$
and the order of A is 3 x 3. Then the value of |A| =
1)24
2)12
3) 48
4)50
Solution:
Lower Triangular Matrix -A square matrix in which all the elements above the principal diagonal are Zero
$a_{i j}=0, i<j$
$\begin{aligned} & a_{11}=1+1=2 ; a_{22}=2+2=4 ; a_{33}=3+3=6 \\ & |A|=a_1 \times a_{22} \times a_{33}=2 \times 4 \times 6=48\end{aligned}$
Hence the value of |A| =48
Example 2: If A is a strictly triangular matrix of order 3 x 3 and $B=\operatorname{diag}\left[\begin{array}{lll}3 & 5 & 2\end{array}\right]$ ; Then |AB|=
1)30
2)5
3) 0
4)28
Solution:
Strictly triangular matrix: $a_{i i}=0$ for $1 \leq i \leq n$
Where $
A=\left[a_{i j}\right]_{n \times n}
$
Since diagonal elements of A are 0 and B is a diagonal matrix, If we multiply them we get a matrix with determinant 0 since the first column and last row have all elements = 0
Hence the value of |AB| =0
Example 3: If $A=\left[\begin{array}{ll}3 & 2 \\ 0 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right]$ ; then Which of the following is a triangular matrix?
1)A + B
2)A - B
3)AB
4)none of these
Solution:
Triangular Matrix -Upper Triangular or Lower Triangular matrix
$A B=\left[\begin{array}{ll}3 & 2 \\ 0 & 5\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right]=\left[\begin{array}{cc}7 & 6 \\ 10 & 15\end{array}\right]$
So none of these is a triangular matrix
Hence the correct option is 4) None of these
Example 4: If A is an upper triangular matrix of order 3 x 3 then which of the following is TRUE?
$
\text { 1) } a_{i j}=0
$
$\text { 2) } a_{i j}=0 \forall i>j$
$
\text { 3) } a_{i j}=0 \forall i<j
$
4) None of these
Solution:
adj with i > j denotes the elements which are below the diagonal. Example $a_{21}$ is below the diagonal.
For upper triangular matrices, $a_{i j}=0 \forall i>j$ i.e. elements below the diagonal are 0.
Hence, the answer is option 4.
A square matrix whose all elements above or below the principal diagonal are zero is called a Triangular matrix. We can use Triangular matrices for solving Linear equations and systems of linear equations. They can be applied to the computation of a matrix's determinant, a measure of the relationship between the matrix and its constituent parts.
A square matrix whose all elements below the principal diagonal are zero is called an upper triangular matrix. It is denoted by the letter ‘U’.
square matrix whose all elements above the principal diagonal are zero is called a lower triangular matrix. It is denoted by the letter ‘L’.
The upper triangular matrix of any order has a determinant equal to the product of its primary diagonal members.
A (upper or lower) triangular matrix is referred to as (upper or lower) unit triangular if all of the elements on the major diagonal are 1. Unit (upper or lower) triangular and, extremely infrequently, normed (upper or lower) triangular are other terms for these matrices. A normed triangular matrix is unrelated to the concept of matrix norm, and a unit triangular matrix is not the same as a unit matrix.
11 Oct'24 12:03 PM
11 Oct'24 12:01 PM
11 Oct'24 11:58 AM
11 Oct'24 11:56 AM
11 Oct'24 11:54 AM
11 Oct'24 11:50 AM
11 Oct'24 11:46 AM
11 Oct'24 11:43 AM
11 Oct'24 11:40 AM
11 Oct'24 11:36 AM