Imagine trying to measure the area of a wavy surface - like the motion of a pendulum, the pattern of ocean tides, or the alternating current in an electric circuit. All of these real-world phenomena are modeled using trigonometric functions such as sine, cosine, and tangent. To analyze or predict their behavior mathematically, we need to integrate these periodic functions. That’s where Trigonometric Integrals come into play. This article explores the concept of trigonometric integrals in depth, including standard formulas, trigonometric identities, and solved examples for integrating functions like $ \sin x $, $ \cos x $, $ \tan x $, and their combinations. By the end, you’ll understand how to handle even complex trigonometric expressions through smart substitutions and identities - making this an essential part of mastering mathematics.
This Story also Contains
Trigonometric integrals play a key role in calculus, especially when solving problems involving periodic motion, oscillations, or wave patterns. Whether it’s calculating the total distance covered by a pendulum or analyzing alternating current in physics, integrating trigonometric functions helps determine quantities like area, displacement, and average value over time.
In simple terms, integration is the reverse process of differentiation - it finds the original function from its rate of change. Geometrically, while differentiation gives the slope of a tangent to a curve, integration finds the area under the curve. Trigonometric integrals involve functions like $\sin x$, $\cos x$, and $\tan x$, often requiring clever substitutions to simplify the process.
Before diving into formulas, remember that these functions can often be transformed using trigonometric identities or substitutions such as $\tan x = t$ or $\tan (x/2) = t$.
Such substitutions convert complex trigonometric expressions into algebraic forms that are easier to integrate.
These types of integrals frequently occur when dealing with mixed trigonometric denominators. Examples include:
$\int \frac{1}{a \cos^2 x + b \sin^2 x} , dx$
$\int \frac{1}{a + b \sin^2 x} , dx$
$\int \frac{1}{a + b \cos^2 x} , dx$
$\int \frac{1}{a + b \sin^2 x + c \cos^2 x} , dx$
Step 1: Divide both numerator and denominator by $\cos^2 x$.
This converts all terms into $\tan x$ and $\sec x$ form.
Step 2: Substitute $\tan x = t$, which gives $\sec^2 x , dx = dt$.
After substitution, the integral transforms into an algebraic form:
$\int \frac{f(t) , dt}{A t^2 + B t + C}$
Here, $f(t)$ is a polynomial in $t$. This algebraic integral can then be evaluated using standard techniques discussed in earlier integration concepts.
These integrals involve linear combinations of sine and cosine functions. Examples include:
$\int \frac{1}{a \sin x + b \cos x} , dx$
$\int \frac{1}{a + b \sin x} , dx$
$\int \frac{1}{a + b \cos x} , dx$
$\int \frac{1}{a \sin x + b \cos x + c} , dx$
To simplify such expressions, use the Weierstrass Substitution method:
Write $\sin x$ and $\cos x$ in terms of $\tan \frac{x}{2}$:
$\sin x = \frac{2 \tan (x/2)}{1 + \tan^2 (x/2)}$,
$\cos x = \frac{1 - \tan^2 (x/2)}{1 + \tan^2 (x/2)}$
Now substitute $\tan (x/2) = t$, which gives $dx = \frac{2 , dt}{1 + t^2}$.
After substitution, the integral reduces to the algebraic form:
$\int \frac{1}{a t^2 + b t + c} , dt$
This integral can be easily solved using the quadratic denominator methods covered in earlier topics.
These are among the most general types of trigonometric integrals, where both the numerator and denominator involve linear trigonometric combinations. Examples include:
$\int \frac{p \cos x + q \sin x + r}{a \cos x + b \sin x + c} , dx$
$\int \frac{p \cos x + q \sin x}{a \cos x + b \sin x} , dx$
To simplify, express the numerator as a linear combination of the denominator and its derivative.
Let $(p \cos x + q \sin x + r) = \lambda (a \cos x + b \sin x + c) + \mu (-a \sin x + b \cos x) + \gamma$
Here, $\lambda$, $\mu$, and $\gamma$ are constants determined by comparing the coefficients of $\sin x$, $\cos x$, and constant terms on both sides.
Now, the integral becomes:
$\begin{aligned} \int \frac{p \cos x + q \sin x + r}{a \cos x + b \sin x + c} \, dx &= \int \frac{\lambda (a \cos x + b \sin x + c) + \mu (-a \sin x + b \cos x) + \gamma}{a \cos x + b \sin x + c} \, dx \\ &= \lambda \int dx + \mu \int \frac{-a \sin x + b \cos x}{a \cos x + b \sin x + c} \, dx + \gamma \int \frac{dx}{a \cos x + b \sin x + c} \end{aligned}$
Now, using the substitution $a \cos x + b \sin x + c = t$, the second integral simplifies, leading to:
$\int \frac{p \cos x + q \sin x + r}{a \cos x + b \sin x + c} , dx = \lambda x + \mu \ln |a \cos x + b \sin x + c| + \int \frac{\gamma , dx}{a \cos x + b \sin x + c}$
Thus, the final integrated form can be written as:
$\int \frac{p \cos x + q \sin x + r}{a \cos x + b \sin x + c} , dx = \lambda x + \mu \ln |a \cos x + b \sin x + c| + C$
where $\lambda$ and $\mu$ are constants determined by comparing coefficients, and $C$ is the constant of integration.
Example 1: Integrate $\int \frac{d x}{\sin ^2 x+2 \sin x \cos x}$
1) $\ln \frac{t+1}{t-1}+c$
2) $\ln \frac{t+2}{t}+c$
3) $\frac{1}{2} \ln \frac{t}{(t+2)}+C$
4) none of these
Solution
Divide by $\cos ^2 x$ in each case and pull $t=\tan x, d t=\sec ^2 x d x$
$\int \frac{d x \sec ^2 x}{\tan ^2 x+2 \tan x}=\int \frac{d t}{(t+1)^2-1}=\frac{1}{2} \ln \frac{t}{(t+2)}+C$
Hence, the answer is the option 3.
Example 2: $\int \frac{d x}{1+\sin x}$
1) $\frac{1}{1+\tan \left(\frac{x}{2}\right)}+C$
2) $-\frac{2}{\tan \left(\frac{x}{2}\right)+1}+C$
3) $\frac{1}{1+\cot \left(\frac{x}{2}\right)}+C$
4) $-\frac{1}{1+\cot \left(\frac{x}{2}\right)}+C$
Solution
$\begin{aligned}
& I=\int \frac{1}{\sin (x)+1} \mathrm{~d} x \\
& =\int \frac{\sec ^2\left(\frac{x}{2}\right)}{\left(\tan \left(\frac{x}{2}\right)+1\right)^2} \mathrm{~d} x \\
& \text { Put } u=\tan \left(\frac{x}{2}\right)+1 \Rightarrow \mathrm{d} x=\frac{2}{\sec ^2\left(\frac{x}{2}\right)} \mathrm{d} u \\
& I=2 \int \frac{1}{u^2} d u \\
& =-\frac{2}{u} \\
& =-\frac{2}{\tan \left(\frac{x}{2}\right)+1}+C
\end{aligned}$
Hence, the answer is the option (2).
Example 3: $\int \frac{d x}{3+4 \cos ^2 x}$ equals
1) $\frac{\sqrt{3}}{\sqrt{7}} \tan ^{-1}\left(\sqrt{\frac{3}{7}} \tan x\right)+C$
2) $\frac{1}{\sqrt{21}} \tan ^{-1}\left(\sqrt{\frac{3}{7}} \tan x\right)+C$
$\sqrt{3} \tan ^{-1}\left(\sqrt{\frac{3}{7}} \tan x\right)+C$
4) None of these
Solution
Divide numerator and denominator by $\cos ^2 x$
$\begin{aligned}
& \int \frac{\sec ^2 x d x}{3 \sec ^2 x+4} \\
& =\int \frac{\sec ^2 x d x}{3 \tan ^2 x+3+4} \\
& =\int \frac{\sec ^2 x d x}{7+3 \tan ^2 x}
\end{aligned}$
Put $\tan x=t \Rightarrow \sec ^2 x d x=d t$
$\begin{aligned}
& \int \frac{d t}{7+3 t^2} \\
& =\frac{1}{3} \int \frac{d t}{t^2+\left(\sqrt{\frac{7}{3}}\right)^2} \\
& =\frac{1}{3} \times \frac{\sqrt{3}}{\sqrt{7}} \tan ^{-1}\left(\sqrt{\frac{3}{7}} \tan x\right)+C \\
& =\frac{1}{\sqrt{21}} \tan ^{-1}\left(\sqrt{\frac{3}{7}} \tan x\right)+C
\end{aligned}$
Hence, the answer is the option 2.
Example 4: Integrate $\int \frac{d x}{\sin ^2 x+2 \cos ^2 x+2 \sin x \cos x}$
1) $x+c$
2) $\frac{1}{2} \tan ^{-1}(1+x)+C$
3) $\tan ^{-1}(1+\tan x)+C$
4) None of these
Solution
Divide by $\cos^{2} x$
$\begin{aligned}
& \int \frac{\sec ^2 x \cdot d x}{\tan ^2 x+2+2 \tan x} \\
& I=\int \frac{\sec ^2 x d x}{(\tan x+1)^2+1}
\end{aligned}$
Put $\tan (x)=t$
$\sec ^2 x d x=d t$
$\begin{aligned}
& I=\int \frac{d t}{(t+1)^2+1} \\
& =\tan ^{-1}(t+1)+C \\
& =\tan ^{-1}(\tan x+1)+C
\end{aligned}$
Hence, the answer is the option 3.
Example 5: $\int \frac{d x}{1+2 \cos x}$
1) $\frac{1}{\sqrt{3}} \ln \left|\frac{\sqrt{3}+\tan \frac{x}{2}}{\sqrt{3}-\tan \frac{x}{2}}\right|+c$
2) $-\frac{1}{\sqrt{3}} \cdot \ln \left|\frac{\tan \left(\frac{x}{2}\right)-\sqrt{3}}{\tan \left(\frac{x}{2}\right)+\sqrt{3}}\right|+c$
3) $\frac{2}{\sqrt{3}} \ln \left|\frac{\sqrt{3}+\tan \frac{x}{2}}{\sqrt{3}-\tan \frac{x}{2}}\right|+c$
4) None of these
Solution
$\begin{aligned} & \int \frac{d x}{1+2 \cos x} \\ & \int \frac{d x}{1+\frac{2-2 \tan ^2 \frac{x}{2}}{1+\tan ^2 \frac{2}{2}}} \\ & =\int \frac{\sec ^2\left(\frac{x}{2}\right) \cdot d x}{3-\tan ^2\left(\frac{x}{2}\right)} \\ & \text { Put } u=\tan \left(\frac{x}{2}\right) \Rightarrow \frac{1}{2} \sec ^2\left(\frac{x}{2}\right) \cdot d x=d u \\ & =-2 \int \frac{1}{u^2-3} d u \\ & =-\frac{1}{\sqrt{3}} \cdot \ln \left|\frac{u-\sqrt{3}}{u+\sqrt{3}}\right|+c \\ & =-\frac{1}{\sqrt{3}} \cdot \ln \left|\frac{\tan \left(\frac{x}{2}\right)-\sqrt{3}}{\tan \left(\frac{x}{2}\right)+\sqrt{3}}\right|+c\end{aligned}$Hence, the answer is the option (2).
This section outlines all the key concepts and formulas associated with trigonometric integrals, including topics like integration of particular functions, indefinite integrals, integration by parts, etc.
Integral of Particular Functions
Here you’ll find direct links and references to NCERT-based materials-notes, solutions, and exemplars-to strengthen your conceptual understanding of integrals.
NCERT Class 12 Maths Notes for Chapter 7 - Integrals
NCERT Class 12 Maths Solutions for Chapter 7 - Integrals
NCERT Class 12 Maths Exemplar Solutions for Chapter 7 - Integrals
This section provides a wide range of practice questions and MCQs focused on integration involving trigonometric functions. It helps you strengthen concepts like $\sin x$, $\cos x$, $\tan x$, integrals, trigonometric substitutions, and standard reduction formulas that frequently appear in board and competitive exams.
Trigonometric Integrals- Practice Question MCQ
We have provided below the practice questions related to different concepts of integration to improve your understanding:
Frequently Asked Questions (FAQs)
Integration is the reverse process of differentiation.
The other name of integration is antiderivative.
An integration of sin x is -cos x.
An integration of cos x is sin x.
An integration of sec x tan x is sec x.