Think about turning a ladder a little more or combining two turns while rotating an object — the final position depends on the sum or difference of angles involved. In trigonometry, when angles combine like this, we use trigonometric ratios of compound angles to find accurate values. The trigonometric ratios of compound angles deal with expressions such as $\sin(A \pm B)$, $\cos(A \pm B)$, and $\tan(A \pm B)$. These formulas help us evaluate trigonometric values that cannot be found directly from standard angles and play an important role in simplifying expressions, solving equations, and answering exam-level problems. In this article, we will explore the formulas, meanings, and applications of compound angle trigonometric ratios in a simple and systematic way.
This Story also Contains
In trigonometry, a compound angle is formed when two or more angles are added or subtracted. If $A$, $B$, and $C$ are angles, then expressions such as
$A + B$, $A - B$, $A + B + C$, and $A + B - C$
are all called compound angles.
The study of compound angles is important because many trigonometric values cannot be evaluated directly using standard angles. This leads to the use of trigonometric ratios of compound angles, which are widely used in simplification, proofs, and problem-solving.
The trigonometric ratios of compound angles express the sine, cosine, and tangent of the sum or difference of two angles in terms of the trigonometric ratios of the individual angles. These identities are also known as sum and difference formulas.
$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$
$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$
$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$
$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
These formulas are frequently used to find exact values of trigonometric expressions and to prove identities.
Tangent of Sum and Difference of Angles
$\tan(\alpha + \beta) = \dfrac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$
$\tan(\alpha - \beta) = \dfrac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$
These identities are especially useful in algebraic simplifications and equation solving.
Cotangent of Sum and Difference of Angles
$\cot(\alpha + \beta) = \dfrac{\cot \alpha \cot \beta - 1}{\cot \alpha + \cot \beta}$
$\cot(\alpha - \beta) = \dfrac{\cot \alpha \cot \beta + 1}{\cot \beta - \cot \alpha}$
Cotangent formulas are often applied in advanced trigonometric proofs and transformations.
The derivations of compound angle formulas help us understand why formulas like $\sin(\alpha \pm \beta)$ and $\cos(\alpha \pm \beta)$ work, rather than just memorising them. These derivations are commonly based on unit circle geometry, coordinate geometry, and triangle properties, making them important for conceptual clarity in trigonometry.
To derive the cosine of the difference of two angles, we use the unit circle and coordinate geometry approach, which is both intuitive and mathematically sound.
Consider a unit circle centered at the origin $O$.
Let point $P$ lie on the unit circle at an angle $\alpha$ from the positive $x$-axis.
Its coordinates are $(\cos \alpha, \sin \alpha)$.
Let point $Q$ lie on the unit circle at an angle $\beta$ from the positive $x$-axis.
Its coordinates are $(\cos \beta, \sin \beta)$.
The angle between the rays $OP$ and $OQ$ is therefore $\alpha - \beta$.
Now consider two additional points:
Point $A$ lies on the unit circle at an angle $(\alpha - \beta)$ from the positive $x$-axis, with coordinates
$(\cos(\alpha - \beta), \sin(\alpha - \beta))$.
Point $B$ lies on the positive $x$-axis at coordinates $(1, 0)$.
Triangle $POQ$ can be viewed as a rotation of triangle $AOB$, since both triangles subtend the same angle at the center.
Because rotation does not change distances:
The distance between points $P$ and $Q$
is equal to the distance between points $A$ and $B$
Using the distance formula, we can equate these two distances.
Distance between $P(\cos \alpha, \sin \alpha)$ and $Q(\cos \beta, \sin \beta)$:
$(PQ)^2 = (\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2$
Distance between $A(\cos(\alpha - \beta), \sin(\alpha - \beta))$ and $B(1, 0)$:
$(AB)^2 = (\cos(\alpha - \beta) - 1)^2 + \sin^2(\alpha - \beta)$
Since $PQ = AB$, equating these expressions and simplifying leads to the identity:
$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
Final Result
The cosine of the difference of two angles is given by:
$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$

Using the identity $\cos(\alpha + \beta) = \cos(\alpha - (-\beta))$,
$\cos(\alpha + \beta) = \cos \alpha \cos(-\beta) + \sin \alpha \sin(-\beta)$
Using even–odd properties,
$\cos(-\beta) = \cos \beta$
$\sin(-\beta) = -\sin \beta$
So,
$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$
$\sin(\alpha - \beta) = \cos\left(90^\circ - (\alpha - \beta)\right)$
$= \cos\left((90^\circ - \alpha) + \beta\right)$
$= \cos(90^\circ - \alpha)\cos \beta - \sin(90^\circ - \alpha)\sin \beta$
$= \sin \alpha \cos \beta - \cos \alpha \sin \beta$
$\sin(\alpha + \beta) = \sin(\alpha - (-\beta))$
$= \sin \alpha \cos(-\beta) - \cos \alpha \sin(-\beta)$
$= \sin \alpha \cos \beta + \cos \alpha \sin \beta$
$\tan(\alpha + \beta) = \dfrac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}$
$= \dfrac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta}$
Dividing numerator and denominator by $\cos \alpha \cos \beta$,
$\tan(\alpha + \beta) = \dfrac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$
$\tan(\alpha - \beta) = \dfrac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$
$\cot(\alpha + \beta) = \dfrac{\cos(\alpha + \beta)}{\sin(\alpha + \beta)}$
$= \dfrac{\cos \alpha \cos \beta - \sin \alpha \sin \beta}{\sin \alpha \cos \beta + \cos \alpha \sin \beta}$
Dividing numerator and denominator by $\sin \alpha \sin \beta$,
$\cot(\alpha + \beta) = \dfrac{\cot \alpha \cot \beta - 1}{\cot \alpha + \cot \beta}$
$\cot(\alpha - \beta) = \dfrac{\cot \alpha \cot \beta + 1}{\cot \beta - \cot \alpha}$
$\sin(A+B)\sin(A-B) = \sin^2 A - \sin^2 B = \cos^2 B - \cos^2 A$
$\cos(A+B)\cos(A-B) = \cos^2 A - \sin^2 B = \cos^2 B - \sin^2 A$
$\tan(A+B+C) = \dfrac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan B \tan C - \tan C \tan A}$
In trigonometry, product-to-sum formulas help convert the product of sine and cosine functions into a sum or difference of trigonometric ratios. These identities are extremely useful for simplifying expressions, proving identities, and solving trigonometric equations, especially in board and competitive exams.
The standard transformation of products into sums or differences is given below:
$2\sin A \cos B = \sin(A+B) + \sin(A-B)$
$2\cos A \cos B = \cos(A+B) + \cos(A-B)$
$2\cos A \sin B = \sin(A+B) - \sin(A-B)$
$2\sin A \sin B = \cos(A-B) - \cos(A+B)$
These formulas allow us to rewrite products of trigonometric functions in a simpler and more workable form.
Multiple-angle identities express trigonometric ratios of angles like $2A$ or $3A$ in terms of the ratio of angle $A$. These identities play a key role in simplification, evaluation, and solving higher-level trigonometric problems.
The double angle identities are derived from compound angle formulas:
$\sin 2A = 2\sin A \cos A$
$\sin 2A = \dfrac{2\tan A}{1 + \tan^2 A}$
$\cos 2A = \cos^2 A - \sin^2 A$
$\cos 2A = 2\cos^2 A - 1$
$\cos 2A = 1 - 2\sin^2 A$
$\tan 2A = \dfrac{2\tan A}{1 - \tan^2 A}$
The triple angle identities express trigonometric ratios of $3A$ in terms of $A$:
$\sin 3A = 3\sin A - 4\sin^3 A$
$\cos 3A = 4\cos^3 A - 3\cos A$
$\tan 3A = \dfrac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$
Example 1: The value of $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$ is
[JEE MAINS 2023]
Solution
$\left(\tan 9^{\circ}+\cot 9^{\circ}\right)-\left(\tan 27^{\circ}+\cot 27^{\circ}\right)$
$\dfrac{1}{\sin 9^{\circ} \cos 9^{\circ}}-\dfrac{1}{\sin 27^{\circ} \cos 27^{\circ}}$
$\dfrac{2}{\sin 18^{\circ}}-\dfrac{2}{\sin 54^{\circ}}$
$\dfrac{2(4)}{\sqrt{5}-1}-\dfrac{2(4)}{\sqrt{5}+1}$
$\dfrac{8(\sqrt{5}+1)}{4}-\dfrac{8(\sqrt{5}-1)}{4}$
$2[(\sqrt{5}+1)-(\sqrt{5}-1)]$
$=4$
Hence, the answer is option 4.
Example 2: Let $\mathrm{S}={\theta\in[0,2\pi]:8^{2\sin^2\theta}+8^{2\cos^2\theta}=16}$
Then $\mathrm{n(S)}+\sum_{\theta\in S}\left(\sec\left(\dfrac{\pi}{4}+2\theta\right)\csc\left(\dfrac{\pi}{4}+2\theta\right)\right)$ equals
[JEE MAINS 2022]
Solution
$8^{2\sin^2\theta}+8^{2-2\sin^2\theta}=16$
$y+\dfrac{64}{y}=16$
$y=8$
$\sin^2\theta=\dfrac{1}{2}$
So,
$\mathrm{n(S)}+\sum_{\theta\in S}\dfrac{1}{\cos\left(\dfrac{\pi}{4}+2\theta\right)\sin\left(\dfrac{\pi}{4}+2\theta\right)}$
$=4+(-2)\times4$
$=-4$
Hence, the answer is option 3.
Example 3: If $\cot\alpha=1$ and $\sec\beta=-\dfrac{5}{3}$, where
$\pi<\alpha<\dfrac{3\pi}{2}$ and $\dfrac{\pi}{2}<\beta<\pi$, find $\tan(\alpha+\beta)$ and the quadrant.
[JEE MAINS 2022]
Solution
$\cot\alpha=1 \Rightarrow \tan\alpha=1$
$\sec\beta=-\dfrac{5}{3} \Rightarrow \tan\beta=-\dfrac{4}{3}$
$\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$
$=\dfrac{1-\dfrac{4}{3}}{1+\dfrac{4}{3}}$
$=-\dfrac{1}{7}$
$\pi<\alpha<\dfrac{3\pi}{2}$ and $\dfrac{\pi}{2}<\beta<\pi$
$\Rightarrow \dfrac{3\pi}{2}<\alpha+\beta<\dfrac{5\pi}{2}$
$\tan(\alpha+\beta)<0 \Rightarrow$ IV quadrant
Hence, the answer is option 1.
Example 4: Let $f(x+y)+f(x-y)=2f(x)f(y)$ and $f\left(\dfrac{1}{2}\right)=-1$
[JEE MAINS 2021]
Solution
$f(x+y)+f(x-y)=2f(x)f(y)$
Clearly, $f(x)=\cos(ax)$
$f\left(\dfrac{1}{2}\right)=-1$
$-1=\cos\left(-\dfrac{a}{2}\right)$
$-\dfrac{a}{2}=\pi \Rightarrow a=-2\pi$
$f(x)=\cos(-2\pi x)$
For $k\in\mathbb{N}$, $f(k)=1$
$\dfrac{1}{\sin k\sin(k+1)}$
$=\dfrac{1}{\sin1}\left(\cot k-\cot(k+1)\right)$
Required sum
$=\dfrac{1}{\sin1}(\cot1-\cot21)$
$=\dfrac{1}{\sin1}\left(\dfrac{\cos1}{\sin1}-\dfrac{\cos21}{\sin21}\right)$
$=\dfrac{\sin(21-1)}{\sin^2 1\cdot\sin21}$
$=\csc^2(1)\csc(21)\sin(20)$
Hence, the answer is option 3.
This section outlines all important and related topics connected to trigonometric ratios of compound angles, helping you build strong conceptual links. It serves as a quick reference guide for revision, practice, and exam-oriented preparation.
We have given below the list of NCERT resources including NCERT Notes, solutions and exemplar solutions for class 11, chapter 3 Trigonometric Functions:
NCERT Class 11 Chapter 3 Trigonometric Functions Notes
This section includes carefully selected practice questions on trigonometric ratios of compound angles, designed to strengthen your understanding of sum and difference formulas. These problems help you apply compound angle identities effectively in board exams and competitive exams like JEE.
Trigonometric Ratios Of Compound Angles - Practice Question
We have provided the list of practice questions based on the following topics:
Frequently Asked Questions (FAQs)
The sum or difference of two or more angles is called a compound angle. If $A, B$, and $C$ are any angle then $A+B, A-B, A+B+C, A+B-C$ etc all are compound angles.
Sine compound angle formulas are given by
\begin{aligned}
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
\end{aligned}
Finding the sum of two angles formula for tangent involves taking the quotient of the sum formulas for sine and cosine and simplifying,
\begin{aligned}
\tan (\alpha+\beta) & =\frac{\sin (\alpha+\beta)}{\cos (\alpha+\beta)} \\
& =\frac{\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\cos \alpha \cos \beta-\sin \alpha \sin \beta}
\end{aligned}
The Cos compound angle formula is given by
\begin{aligned}
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
\end{aligned}
\begin{aligned}
\sin (A+B) \sin (A-B) & =(\sin A \cos B+\cos A \sin B)(\sin A \cos B-\cos A \sin B) \\
& =\sin ^2 A \cos ^2 B-\cos ^2 A \sin ^2 B \\
& =\sin ^2 A\left(1-\sin ^2 B\right)-\left(1-\sin ^2 A\right) \sin ^2 B \\
& =\sin ^2 A-\sin ^2 A \sin ^2 B-\sin ^2 B+\sin ^2 A \sin ^2 B=\sin ^2 A-\sin ^2 B \\
& =\left(1-\cos ^2 A\right)-\left(1-\cos ^2 B\right)=\cos ^2 B-\cos ^2 A
\end{aligned}