Truth Table: AND, OR, NAND, NOR, Conditional and Bi-conditional

Truth Table: AND, OR, NAND, NOR, Conditional and Bi-conditional

Edited By Komal Miglani | Updated on Oct 15, 2024 12:08 PM IST

In mathematical logic and philosophy, a statement or proposition is a declarative sentence that is either true or false. The truth value of a statement indicates whether it is true (denoted by "$T$") or false (denoted by "$F$"). This binary nature of truth values is fundamental to logical reasoning, enabling us to analyze and construct complex logical expressions systematically.

Truth Table: AND, OR, NAND, NOR, Conditional and Bi-conditional
Truth Table: AND, OR, NAND, NOR, Conditional and Bi-conditional

Truth Value of a Statement

As we know that a statement is either true or false. The truth or falsity of a statement is called truth value.

If the statement is true, then truth value is “$T$”

If the statement is false, then truth value is “$F$”

Truth Table

A table indicating the truth value of one or more statements is called a truth table.

Truth table of one statement ‘$p$’ is

$\begin{array}{|c|}\hline \mathrm{\;\;\;\;\;}p\mathrm{\;\;\;\;\;}\mathrm{\;\;\;} \\ \hline \mathrm{T}\\ \hline \mathrm{F} \\ \hline\end{array}$

Truth table for two statement ‘$p$’ and ‘$q$’ is

$\begin{array}{|c|c|}\hline \mathrm{\;\;\;\;\;}p\mathrm{\;\;\;\;\;}&\mathrm{\;\;\;\;\;}q\mathrm{\;\;\;\;\;} \\ \hline \mathrm{T}& \mathrm{T} \\ \hline \mathrm{T}&\mathrm{F} \\ \hline \mathrm{F}&\mathrm{T}\\\hline \mathrm{F}&\mathrm{F} \\ \hline\end{array}$

In the case of n statements, there are $2^n $ distinct possible arrangements of truth values of statements.

Truth Table for Negation of a Statement

The truth value of the negation of a statement is always opposite to the truth value of the original statement.

$\begin{array}{|c|c|}\hline \mathrm{\;\;\;\;\;}p\mathrm{\;\;\;\;\;}&\mathrm{\;\;\;}\sim p\mathrm{\;\;\;\;\;} \\ \hline \mathrm{T}& \mathrm{F} \\ \hline \mathrm{F}&\mathrm{T} \\ \hline\end{array}$

Truth Table of Conjunction and Disjunction:

$\begin{array}{|c|c|c|c|c|c|c|c|c|c|}\hline \mathrm{\;\;\;\;\;}p\mathrm{\;\;\;\;\;}&\mathrm{\;\;\;}\sim p\mathrm{\;\;\;}&\mathrm{\;\;\;\;\;}q\mathrm{\;\;\;\;\;}&\mathrm{\;\;\;}\sim q\mathrm{\;\;\;} &\mathrm{\;\;\;}p\wedge q\mathrm{\;\;}&\mathrm{\;\;\;}\sim p\wedge \sim q \mathrm{\;\;}&\mathrm{\;\;\;}p\vee q\mathrm{\;\;}&\mathrm{\;\;\;}\sim\left (p\vee q \right )\mathrm{\;\;} \\ \hline \mathrm{T}&\mathrm{F} & \mathrm{T} &\mathrm{F}&\mathrm{T}&\mathrm{F} &\mathrm{T}&\mathrm{F}\\ \hline \mathrm{T}&\mathrm{F} & \mathrm{F} &\mathrm{T}&\mathrm{F}&\mathrm{F} & \mathrm{T}&\mathrm{F}\\ \hline \mathrm{F}&\mathrm{T} & \mathrm{T} &\mathrm{F}&\mathrm{F}&\mathrm{F} & \mathrm{T}&\mathrm{F}\\ \hline \mathrm{F}&\mathrm{T} & \mathrm{F} &\mathrm{T}&\mathrm{F}&\mathrm{T}& \mathrm{F}&\mathrm{T} \\ \hline\end{array}$

Negation of a Negation

Negation of negation of a statement is the statement itself. Equivalently, we write: $\sim (\sim p) \rightarrow p$

Truth Table

$\begin{array}{|c|c|c|}\hline \mathrm{\;\;\;\;\;}p\mathrm{\;\;\;\;\;}&\mathrm{\;\;\;\;\;}\sim p\mathrm{\;\;\;\;\;} &\mathrm{\;\;\;\;\;}\sim\left (\sim p \right )\mathrm{\;\;\;\;\;} \\ \hline \mathrm{T}& \mathrm{F}&\mathrm{T} \\ \hline \mathrm{F}&\mathrm{T}&\mathrm{F} \\ \hline\end{array}$

Truth Table for Conditional Statement:

A Conditional Statement is false only when p is true and q is false. In all other cases this is true.

$\begin{array}{|c|c|c|}\hline \mathrm{\;\;\;\;\;}p\mathrm{\;\;\;\;\;}&\mathrm{\;\;\;\;\;}q\mathrm{\;\;\;\;\;} &\mathrm{\;\;\;}p\rightarrow q\mathrm{\;\;} \\ \hline \mathrm{T}& \mathrm{T} & \mathrm{T}\\ \hline \mathrm{T}&\mathrm{F}& \mathrm{F} \\ \hline \mathrm{F}&\mathrm{T}& \mathrm{T}\\\hline \mathrm{F}&\mathrm{F} & \mathrm{T}\\ \hline\end{array}$

Truth Table for Biconditional Statements:

A biconditional statement is true when both $p$ and $q$ are true or when both $p$ and $q$ are false

$\begin{array}{|c|c|c|}\hline \mathrm{\;\;\;\;\;}p\mathrm{\;\;\;\;\;}&\mathrm{\;\;\;\;\;}q\mathrm{\;\;\;\;\;} &\mathrm{\;\;\;}p\leftrightarrow q\mathrm{\;\;} \\ \hline \mathrm{T}& \mathrm{T} & \mathrm{T}\\ \hline \mathrm{T}&\mathrm{F}& \mathrm{F} \\ \hline \mathrm{F}&\mathrm{T}& \mathrm{F}\\\hline \mathrm{F}&\mathrm{F} & \mathrm{T}\\ \hline\end{array}$

Relation Between Set Notation and Truth Table

Sets can be used to identify basic logical structure of statements.

Let us understand with an example of two sets $p \{1,2\}$ and $q \{2,3\}$

$\begin{array}{|c|c|c|}\hline\quad p\vee q\quad & \quad p\cup q\quad&\quad 1,2,3\quad \\ \hline p\wedge q& p\cap q&2 \\ \hline p^c& \sim p & 3,4 \\ \hline q^c& \sim q&1,4 \\ \hline\end{array}$

Using this relation we get

$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}\hline \text{Element } & \mathrm{\;\;\;\;\;}p\mathrm{\;\;\;\;\;}&\mathrm{\;\;\;}q\mathrm{\;\;\;}&\mathrm{\;\;\;\;\;}\sim p\mathrm{\;\;\;\;\;}&\mathrm{\;\;\;}\sim q\mathrm{\;\;\;} &\mathrm{\;\;\;}p\wedge q\mathrm{\;\;}&\mathrm{\;\;}p\vee q\mathrm{\;\;}&\sim\left (p\wedge q \right )\mathrm{\;\;}&\sim p\wedge\sim q\mathrm{\;\;} \\ \hline \hline 1& \mathrm{T}&\mathrm{F} & \mathrm{F} &\mathrm{T}&\mathrm{F}&\mathrm{T}&\mathrm{T}&\mathrm{F} \\ \hline2& \mathrm{T}&\mathrm{T} & \mathrm{F} &\mathrm{F}&\mathrm{T}&\mathrm{T}&\mathrm{F}&\mathrm{F} \\ \hline 3& \mathrm{F}&\mathrm{T} & \mathrm{T} &\mathrm{F}&\mathrm{F}&\mathrm{F}&\mathrm{T}&\mathrm{F} \\ \hline4& \mathrm{F}&\mathrm{F} & \mathrm{T} &\mathrm{T}&\mathrm{F}&\mathrm{F}&\mathrm{T}&\mathrm{T} \\ \hline\end{array}$

Recommended Video


Solved Examples

Example 1: The contrapositive of the statement “I go to school if it does not rain” is :

1) If it rains, I do not go to school.

2) I do not go to school, it rains.

3) If it rains, I go to school.

4) If I go to school, it rains.

Solution

Symbol of If $p$ then $q$ is $p \rightarrow q$ or $p \Rightarrow q$
The contrapositive of $p \rightarrow q$ is $\sim q \rightarrow p$

We need to examine the given statement if says If it does not rain, then I go to school

So contrapositive will be

If I do not go to school, it rains

Example 2: The negation of the statement “If I become a teacher, then I will open a school” is

1) I will become a teacher and I will not open a school

2) Either I will not become a teacher or I will not open a school

3) Neither I will become a teacher nor I will open a school

4) I will not become a teacher or I will open a school

Solution

The given statement is " If I become a teacher, then I will open a school’ "

Negation of the given statement is

"I will become a teacher and I will not open a school"

$
(\because \sim(p \rightarrow q)=p \wedge \sim q)
$

Negation of Conditional Statement -

$
\sim(p \Rightarrow q) \equiv p \wedge \sim q
$

Example 3: Which of the following is true for an if-then statement $p \Rightarrow q$ is true?
1) If $p$ is true, $q$ must be true
2) If $p$ is false, $q$ must be false
3) If $q$ is false, $p$ must be false
4) none of these

Solution

As we have learned

Validating Statements with 'If then' -

By assuming that $p$ is true, prove that $q$ must be true. By assuming that $q$ is false, prove that $p$ must be false.

If $P$ is true, $q$ must be true and If $q$ is false, $p$ must be false

Example 4: Which of the options is sufficient condition for $p \Leftrightarrow q$ to be true ?
1) $p \Rightarrow q$ and $q \neq p$
2) $p \Rightarrow q$ or $q \Rightarrow p$
3) $p \Rightarrow q$ and $q \Rightarrow p$
4) $p \neq q$ and $q \neq p$

Solution

As we have learned

Validating Statements with "If and only if' -

If $p$ is true, then $q$ is true. If $q$ is true then $p$ is true.
Both $p \Rightarrow q$ or $q \Rightarrow p$ must be true
Example 5: What is truth table for $\sim(p \wedge q)$ ?
1) $TTTT$
2) $FFFT$
3) $TTF$
4) $FTTT$

Solution

Construction of truth table -

We prepare table of rows and columns. We write variables denoting sub-statements and we write the truth value of sub statement to get compound statement.

Figure 1

Since truth table for $p \wedge q$ is $TFFF$
For $\sim(p \wedge q)$ is $FTTT$

Summary
Truth values and truth tables are essential tools in logical reasoning, providing a clear and systematic way to analyze the truth or falsity of statements. They are fundamental in the study of logic, computer science, mathematics, and philosophy.

Articles

Get answers from students and experts
Back to top