Imagine pushing a box on the floor while another force is pulling it sideways and a third one is lifting it slightly upward. When three different directions come into play, understanding their combined effect becomes tricky. That’s where the Vector Triple Product steps in. In Vector Algebra, the vector triple product helps us simplify expressions involving three vectors and reveals beautiful geometric relationships between them. It is a powerful resource for solving complex vector problems with ease. In this article, we will explore the meaning of the vector triple product in maths, its formula, important identities, and practical examples for clear understanding.
This Story also Contains
The Vector Triple Product is an important concept in Vector Algebra that involves three vectors and a combination of cross and dot products. It is defined as the cross product of one vector with the cross product of the other two vectors. The result of a vector triple product is always a vector, not a scalar.
It is generally written as:
$\vec{a} \times (\vec{b} \times \vec{c})$
One special and useful property of the vector triple product is that its resultant vector always lies in the plane formed by the vectors $\vec{b}$ and $\vec{c}$. This makes it extremely helpful in simplifying complex vector expressions and solving geometrical and physical problems.
The Vector Triple Product is defined as the vector obtained when one vector is crossed with the cross product of two other vectors.
For three vectors $\vec{a}$, $\vec{b}$, and $\vec{c}$, the vector triple product is:
$\vec{a} \times (\vec{b} \times \vec{c})$
It represents a vector combination that can be simplified using dot products, making calculations easier and more efficient.
The formula of the vector triple product is given by the well-known identity:
$\vec{a} \times (\vec{b} \times \vec{c})
= (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$
This formula is extremely useful because it converts a complicated cross–cross product into a simple linear combination of vectors $\vec{b}$ and $\vec{c}$.
We have provided below the important properties of the vector triple product:
The vector $\vec{a} \times (\vec{b} \times \vec{c})$ always lies in the plane containing $\vec{b}$ and $\vec{c}$.
In general, $\vec{a} \times (\vec{b} \times \vec{c}) \ne (\vec{a} \times \vec{b}) \times \vec{c}$
The vector triple product identity is widely used to simplify expressions in physics, engineering, and advanced vector geometry.

Let
$\vec{p}=\vec{a} \times(\vec{b} \times \vec{c})$
Since $\vec{p}$ is a cross product, it is perpendicular to both $\vec{a}$ and $(\vec{b} \times \vec{c})$.
But $\vec{b} \times \vec{c}$ itself is perpendicular to the plane formed by $\vec{b}$ and $\vec{c}$.
Hence, $\vec{p}$ must lie in the plane of $\vec{b}$ and $\vec{c}$.
Therefore, $\vec{p}$ can be expressed as a linear combination of $\vec{b}$ and $\vec{c}$:
$\vec{p}=l\vec{b}+m\vec{c}$ ...(i)
where $l$ and $m$ are scalars.
Taking dot product of equation (i) with $\vec{a}$:
$\vec{p}\cdot\vec{a}=l(\vec{a}\cdot\vec{b})+m(\vec{a}\cdot\vec{c})$
But
$\vec{p}=\vec{a}\times(\vec{b}\times\vec{c})$ is perpendicular to $\vec{a}$,
so
$\vec{p}\cdot\vec{a}=0$
Hence,
$l(\vec{a}\cdot\vec{b})+m(\vec{a}\cdot\vec{c})=0$
or
$l(\vec{a}\cdot\vec{b})=-m(\vec{a}\cdot\vec{c})$
Let
$\frac{l}{\vec{a}\cdot\vec{c}}=\frac{-m}{\vec{a}\cdot\vec{b}}=\lambda$
Then,
$l=\lambda(\vec{a}\cdot\vec{c})$
$m=-\lambda(\vec{a}\cdot\vec{b})$
Substituting in equation (i):
$\vec{a} \times(\vec{b} \times \vec{c})
=\lambda[(\vec{a}\cdot\vec{c})\vec{b}-(\vec{a}\cdot\vec{b})\vec{c}]$
Choose simple vectors:
$\vec{a}=\hat{i},; \vec{b}=\hat{i},; \vec{c}=\hat{j}$
Then,
$\hat{i}\times(\hat{i}\times\hat{j})
=\lambda[(\hat{i}\cdot\hat{j})\hat{i}-(\hat{i}\cdot\hat{i})\hat{j}]$
$\hat{i}\times\hat{k}
=\lambda[0\cdot\hat{i}-1\cdot\hat{j}]$
$-\hat{j}=-\lambda\hat{j}$
So,
$\lambda=1$
Hence, the final identity becomes:
$\vec{a} \times(\vec{b} \times \vec{c})
=(\vec{a}\cdot\vec{c})\vec{b}-(\vec{a}\cdot\vec{b})\vec{c}$
This is the standard Vector Triple Product Identity.
$\vec{a} \times(\vec{b} \times \vec{c})
=(\vec{a}\cdot\vec{c})\vec{b}-(\vec{a}\cdot\vec{b})\vec{c}$
$(\vec{a} \times \vec{b}) \times \vec{c}
=(\vec{c}\cdot\vec{a})\vec{b}-(\vec{c}\cdot\vec{b})\vec{a}$
In general,
$\vec{a} \times(\vec{b} \times \vec{c})
\neq (\vec{a} \times \vec{b}) \times \vec{c}$
Equality holds only when $\vec{a}$ and $\vec{c}$ are collinear.
Provided below are the properties of vector triple product:
The vector triple product is always a vector.
$\vec{a} \times(\vec{b} \times \vec{c})
\neq (\vec{a} \times \vec{b}) \times \vec{c}$
$\vec{a} \times(\vec{b} \times \vec{c})$ is perpendicular to both:
$\vec{a}$
$(\vec{b} \times \vec{c})$
$\vec{a} \times(\vec{b} \times \vec{c})$ always lies in the plane of $\vec{b}$ and $\vec{c}$.
Example 1: If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors and $\hat{n}$ is a unit vector perpendicular to $\hat{c}$ such that $\vec{a}=\alpha \vec{b}-\hat{n}(a \neq 0)$ and $\vec{b} \cdot \vec{c}=12$, then $|\vec{c} \times(\vec{a} \times \vec{b})|_{\text {is equal to: }}$
[JEE MAINS 2023]
Solution
$
\begin{aligned}
& \overrightarrow{\mathrm{a}}=\alpha \overrightarrow{\mathrm{b}}-\hat{\mathrm{n}}, \vec{b} \cdot \overrightarrow{\mathrm{c}}=12 \\
& \overrightarrow{\mathrm{c}} \times(\vec{a} \times \vec{b})=(\vec{c} \cdot \vec{b}) \vec{a}-(\vec{c} \cdot \vec{a}) \vec{b} \\
& \overrightarrow{\mathrm{c}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=12 \vec{a}-(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{b}}) \\
& \because \overrightarrow{\mathrm{a}}=\alpha \overrightarrow{\mathrm{b}}-\mathrm{n}
\end{aligned}
$
$
\vec{c} \cdot \vec{a}=\alpha \overrightarrow{\mathrm{c}} \cdot \vec{b}-\vec{c} \cdot \mathrm{n}
$
$
\vec{c} \cdot \vec{a}=12 \alpha
$
$
\begin{aligned}
& \vec{c} \times(\vec{a} \times \vec{b})=12 \vec{a}-12 \alpha \vec{b} \\
& |\vec{c} \times(\vec{a} \times \vec{b})|=12|\vec{a}-\alpha \vec{b}| \quad[\because \vec{a}-\alpha \vec{b}=-n \text { then }|\vec{a}-\alpha \vec{b}|=1] \\
& \Rightarrow|\vec{c} \times(\vec{a} \times \vec{b})|=12
\end{aligned}
$
$
|\overrightarrow{\mathrm{c}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})|=12
$
Hence, the answer is 12
Example 2: Let $\lambda \in \mathbb{R}, \vec{a}=\lambda \hat{\imath}+2 \hat{\jmath}-3 \hat{k}, \vec{b}=\hat{\imath}-\lambda \hat{\jmath}+2 \hat{k}{ }_{\operatorname{If}}((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b})=8 \hat{\imath}-40 \hat{\jmath}-24 \hat{k}$, then $|\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^2$ is equal to
Solution
$
\begin{aligned}
& ((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b}) \times(\vec{a}-\vec{b})-=8 \hat{i}-40 \hat{j}-24 \hat{k} \\
& \Rightarrow(\vec{a} \times(\vec{a} \times \vec{b})+\vec{b} \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b}) \\
& \Rightarrow((\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}+(\vec{b} \cdot \vec{b}) \vec{a}-(\vec{b} \cdot \vec{a}) \vec{b}) \times(\vec{a}-\vec{b}) \\
& \Rightarrow 0-(\vec{a} \cdot \vec{b})(\vec{a} \times \vec{b})-a^2(\vec{b} \times \vec{a})+0-\mathrm{b}^2(\vec{a} \times \vec{b})-(\vec{a} \cdot \vec{b}) \vec{b} \times \vec{a}=8 \hat{\mathrm{i}}-40 \hat{\mathrm{j}}-24 \hat{\mathrm{k}} \\
& \Rightarrow\left(\mathrm{a}^2-\mathrm{b}^2\right)(\vec{a} \times \overrightarrow{\mathrm{b}})=8 \hat{\mathrm{i}}-40 \hat{\mathrm{j}}-24 \hat{\mathrm{k}} \\
& \left(\left(\lambda^2+4+9\right)-\left(1+\lambda^2+4\right)\right)(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \\
& 8(\vec{a} \times \vec{b})=8(\hat{\mathrm{i}}-5 \hat{j}-3 \hat{k}) \\
& \hat{\mathrm{i}}(4-3 \lambda)-\hat{\mathrm{j}}(2 \lambda+3)+\hat{\mathrm{k}}\left(-\lambda^2-2\right)=\hat{\mathrm{i}}-5 \hat{\mathrm{j}}-3 \hat{\mathrm{k}} \\
& \Rightarrow 4-3 \lambda=1 \quad 2 \lambda+3=5 \quad-\lambda^2-2=-3 \\
& 3 \lambda=3 \\
& \lambda=1 \\
& \lambda \\
& \begin{array}{l}
\lambda^2=1
\end{array} \\
& \begin{array}{ll}
\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|=|(\vec{a}+\vec{b}) \times\left.(\vec{a}-\vec{b})\right|^2 \\
\Rightarrow|-\vec{a} \times \vec{b}+\vec{b} \times \vec{a}|^2=|2(\vec{a} \times \vec{b})|^2=4(1+25+9)=140
\end{array}
\end{aligned}
$
Hence, the answer is 140
Example 3: Let $\vec{a}, \vec{b}$ and $\vec{c}$ be three non-zero vectors such that $\vec{b} \cdot \vec{c}=0$ and $\vec{a} \times(\vec{b} \times \vec{c})=\frac{b-\vec{c}}{2}$. If $\vec{d}$ be a vector such that $\vec{b} \cdot \vec{d}=\vec{a} \cdot \vec{b}$, then $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})_{\text {is equal to }}$.
[JEE MAINS 2023]
Solution
We are given $\vec{b}\cdot\vec{c}=0$ and $\vec{a}\times(\vec{b}\times\vec{c})=\dfrac{\vec{b}-\vec{c}}{2}$
Use the vector triple product identity
$\vec{a}\times(\vec{b}\times\vec{c})=\vec{b}(\vec{a}\cdot\vec{c})-\vec{c}(\vec{a}\cdot\vec{b})$
So, $\vec{b}(\vec{a}\cdot\vec{c})-\vec{c}(\vec{a}\cdot\vec{b})=\dfrac{\vec{b}-\vec{c}}{2}$
Compare coefficients of $\vec{b}$ and $\vec{c}$ on both sides.
For $\vec{b}$: $\vec{a}\cdot\vec{c}=\dfrac{1}{2}$
For $\vec{c}$: $-(\vec{a}\cdot\vec{b})=-\dfrac{1}{2}$
So, $\vec{a}\cdot\vec{b}=\dfrac{1}{2}$
Now we are given $\vec{b}\cdot\vec{d}=\vec{a}\cdot\vec{b}=\dfrac{1}{2}$
We need to find $(\vec{a}\times\vec{b})\cdot(\vec{c}\times\vec{d})$
Use the identity
$(\vec{p}\times\vec{q})\cdot(\vec{r}\times\vec{s})=(\vec{p}\cdot\vec{r})(\vec{q}\cdot\vec{s})-(\vec{p}\cdot\vec{s})(\vec{q}\cdot\vec{r})$
So, $(\vec{a}\times\vec{b})\cdot(\vec{c}\times\vec{d})=(\vec{a}\cdot\vec{c})(\vec{b}\cdot\vec{d})-(\vec{a}\cdot\vec{d})(\vec{b}\cdot\vec{c})$
But $\vec{b}\cdot\vec{c}=0$, hence the second term vanishes.
So, $(\vec{a}\times\vec{b})\cdot(\vec{c}\times\vec{d})=(\vec{a}\cdot\vec{c})(\vec{b}\cdot\vec{d})$
Substitute known values:
$\vec{a}\cdot\vec{c}=\dfrac{1}{2}$
$\vec{b}\cdot\vec{d}=\dfrac{1}{2}$
Therefore, $(\vec{a}\times\vec{b})\cdot(\vec{c}\times\vec{d})=\dfrac{1}{2}\cdot\dfrac{1}{2}$
$=\dfrac{1}{4}$
Hence, the answer is $\frac{1}{4}$.
Example 4: Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors mutually perpendicular to each other and have the same magnitude. If a vector $\vec{r}$ satisfies $\vec{a} \times\{(\vec{r}-b) \times \vec{a}\}+b \times\{(\vec{r}-\vec{c}) \times b\}+\vec{c} \times\{(\vec{r}-\vec{a}) \times \vec{c}\}=0$,then $\vec{r}$ is equal to:
Solution: $|\vec{a}|=|\vec{b}|=|\vec{c}|$ and $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$
Let $\vec{r}=x \vec{a}+y \vec{b}+z \vec{c}$
where $\vec{r} \cdot \vec{a}=x|\vec{a}|^2, \vec{r} \cdot \vec{b}=y|\vec{b}|^2, \vec{r} \cdot \vec{c}=z|\vec{c}|^2$
Give expression is
$
\begin{aligned}
& (\vec{a} \times(\vec{r} \times \vec{a}))-(\vec{a} \times(\vec{b} \times \vec{a}))+\vec{b} \times(\vec{r} \times \vec{b})-\vec{b} \times(\vec{c} \times \vec{b})+ \\
& \vec{c} \times(\vec{r} \times \vec{c})-(\vec{c} \times(\vec{a} \times c))=0 \\
& \Rightarrow(\vec{a} \cdot \vec{r}) \vec{a}-|\vec{a}|^2 \vec{r}-(\vec{a} \cdot \vec{b}) \vec{a}+|\vec{a}|^2 \vec{b}+(\vec{b} \cdot \vec{r}) \vec{b}-|\vec{b}|^2 \vec{r}- \\
& (\vec{b} \cdot \vec{c}) \vec{b}+|\vec{b}|^2 \vec{c}+(\vec{c} \cdot \vec{r}) \vec{c}-|\vec{c}|^2 \vec{r}-(\vec{c} \cdot \vec{a}) \vec{a}+|\vec{c}|^2 \vec{a}=0 \\
& \Rightarrow x|\vec{a}|^2 \vec{a}+y|\vec{b}|^2 \vec{b}+z|\vec{c}|^2 \vec{c}-\vec{r}\left(|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2\right)+ \\
& |\vec{a}|^2 \vec{b}+|\vec{b}|^2 \vec{c}+|\vec{c}|^2 \vec{a}=0 \\
& \Rightarrow|\vec{a}|^2(x \vec{a}+y \vec{b}+z \vec{c})-3|\vec{a}|^2 \vec{r}+|\vec{a}|^2(\vec{a}+\vec{b}+\vec{c})=0 \\
& \Rightarrow 3 \vec{r}-\vec{r}=\vec{a}+\vec{b}+\vec{c} \\
& \Rightarrow \vec{r}=\frac{1}{2}(\vec{a}+\vec{b}+\vec{c})
\end{aligned}
$
Hence, the answer is $\frac{1}{2}(\vec{a}+\vec{b}+\vec{c})$
Example 5: Let three vector $\vec{a}, \vec{b}$ and $\vec{c}$ be such that $\vec{c}$ is coplanar with $\vec{a}$ and $\vec{b}, \vec{a} \cdot \vec{b}=7$ and $\vec{b}$ is perpendicular to $\vec{c}$, where $\vec{a}=-\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+\hat{k}$. Then the value of $2|\vec{a}+\vec{b}+\vec{c}|_{\text {is }}^2$ $\qquad$
[JEE MAINS 2021]
Solution
$
\begin{aligned}
\vec{c} & =\lambda(\vec{b} \times(\vec{a} \times \vec{b})) \\
& =\lambda((\vec{b} \cdot \vec{b}) \vec{b}-(\vec{b} \cdot \vec{a}) \vec{b}) \\
& =\lambda(5(-\hat{i}+\hat{j}+\hat{k})+2 \hat{i}+\hat{k}) \\
& =\lambda(-3 \hat{i}+5 \hat{j}+6 \hat{k}) \\
\vec{c} & \cdot \vec{a}=7 \Rightarrow 3 \lambda+5 \lambda+6 \lambda=7 \\
\Rightarrow & \lambda=\frac{1}{2} \\
\therefore & 2\left|\left(\frac{-3}{2}-1+2\right) \hat{i}+\left(\frac{5}{2}+1\right) \hat{j}+(3+1+1) \hat{k}\right|^2 \\
& =2\left(\frac{1}{4}+\frac{49}{4}+25\right)=25+50=75
\end{aligned}
$
Hence, the answer is 75
Provided below is the list of topics which are related to vector triple product in vector algebra, to boost your understanding and strengthen your concepts:
Addition of Vectors and Subtraction of Vectors
Multiplication Of Vectors by a Scalar Quantity
Components Of A Vector Along And Perpendicular To Another Vector
This section offers well-organized NCERT-based resources, including clear notes and step-by-step solutions, to help you study strictly according to the syllabus. It focuses on building strong conceptual clarity in Vector Algebra.
NCERT Maths Class 12th Notes for Chapter 10 - Vector Algebra
NCERT Maths Class 12th Solutions for Chapter 10 - Vector Algebra
NCERT Maths Class 12th Exemplar Solutions for Chapter 10 - Vector Algebra
This section includes carefully selected practice questions based on the Vector Triple Product to help you apply formulas and identities with confidence. It is designed to strengthen your problem-solving skills and improve accuracy through regular practice.
Proof Of The Vector Triple Product- Practice Question MCQ
We have provided below the practice questions based on the topics related to Vector Triple Product:
Frequently Asked Questions (FAQs)
The Vector Triple Product is an expression of the form $\vec{a}\times(\vec{b}\times\vec{c})$, where one vector is crossed with the cross product of two other vectors, and the result is always a vector.
The standard formula is:
$\vec{a}\times(\vec{b}\times\vec{c}) = (\vec{a}\cdot\vec{c})\vec{b}-(\vec{a}\cdot\vec{b})\vec{c}$
The Vector Triple Product is always a vector quantity.
It always lies in the plane containing the vectors $\vec{b}$ and $\vec{c}$.
No, it is not associative.
$\vec{a}\times(\vec{b}\times\vec{c}) \neq (\vec{a}\times\vec{b})\times\vec{c}$