Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Option 1: 5
Option 2: 4
Option 3: 3
Option 4: 2
Correct Answer: 5
Solution : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}$ Rationalise the denominators, $=(\frac{\sqrt{8}+3}{1})-(\frac{\sqrt{7}+\sqrt{8}}{1})+(\frac{\sqrt{6}+\sqrt{7}}{1})-(\frac{\sqrt{5}+\sqrt{6}}{1})+(\frac{2+\sqrt{5}}{1}$) $=\sqrt{8}+3-\sqrt{8}-\sqrt{7}+\sqrt{7}+\sqrt{6}-\sqrt{6}-\sqrt{5}+\sqrt{5}+2$ $=3+2$ $= 5$ Hence, the correct answer is 5.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then what is $\sin \theta-\cos \theta$?
Question : The greatest fraction among $\frac{2}{3}, \frac{5}{6}, \frac{11}{15} \text{ and } \frac{7}{8} \text{ is:}$
Question : The value of $\frac{\frac{5}{2}-\frac{3}{7} \times 1 \frac{4}{5} \div 3 \frac{6}{7}}{\frac{3}{2}+1 \frac{2}{5} \div 3 \frac{1}{2} \times 1 \frac{1}{4}}$ is:
Question : Evaluate: $\frac{\sqrt{24}+\sqrt{6}}{\sqrt{24}-\sqrt{6}}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile