Question : $\text { If } x^2+y^2+z^2=x y+y z+z x \text { and } x=1 \text {, then find the value of } \frac{10 x^4+5 y^4+7 z^4}{13 x^2 y^2+6 y^2 z^2+3 z^2 x^2}$.
Option 1: 2
Option 2: 0
Option 3: –1
Option 4: 1
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 1
Solution : $x^2+y^2+z^2=x y+y z+z x$ $⇒\frac{1}{2}[(x-y)^2+(y-z)^2+(z-x)^2] = 0$ $⇒ x= y, y=z,$ and $z=x$ As $x =1$, so $y=z=1$ So, $\frac{10 x^4+5 y^4+7 z^4}{13 x^2 y^2+6 y^2 z^2+3 z^2 x^2}$ $= \frac{10(1)^4+5(1)^4+7(1)^4}{13(1)^2(1)^2+6(1)^2(1)^2+3(1)^2(1)^2}$ $=\frac{22}{22}$ $=1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $x+y+z=0$ and $x^2+y^2+z^2=40$, then what is the value of $x y+y z+z x?$
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : If $\frac{(x+y)}{z}=2$, then what is the value of $[\frac{y}{(y-z)}+\frac{x}{(x-z)}]?$
Question : If $\frac{1}{x+\frac{1}{y+\frac{2}{z+\frac{1}{4}}}}=\frac{29}{79}$, where x, y, and z are natural numbers, then the value of $(2 x+3 y-z)$ is:
Question : If $x^2+y^2=29$ and $xy=10$, where $x>0,y>0$ and $x>y$. Then the value of $\frac{x+y}{x-y}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile