Question : $\cos \left(30^{\circ}+\theta\right)-\sin \left(60^{\circ}-\theta\right)=$ _____________.
Option 1: $\frac{\sqrt{3}}{2}$
Option 2: $0$
Option 3: $\frac{1}{2}$
Option 4: $\frac{1}{\sqrt{2}}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : $\cos (30^{\circ}+\theta)-\sin (60^{\circ}-\theta)$ = $\cos (30^{\circ}+\theta)-\cos(90^{\circ}-(60^{\circ}-\theta))$ = $\cos (30^{\circ}+\theta)-\cos(90^{\circ}-60^{\circ}+\theta)$ = $\cos (30^{\circ}+\theta)- \cos (30^{\circ}+\theta)$ = $0$ Hence, the correct answer is $0$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : What will be the value of $\frac{\sin 30^{\circ} \sin 40^{\circ} \sin 50^{\circ} \sin 60^{\circ}}{\cos 30^{\circ} \cos 40^{\circ} \cos 50^{\circ} \cos 60^{\circ}}$?
Question : If $\left(\frac{\cos A}{1-\sin A}\right)+\left(\frac{\cos A}{1+\sin A}\right)=4$, then what will be the value of $A$? $\left(0^{\circ}<\theta<90^{\circ}\right)$
Question : If $\cos \left(2 \theta+54^{\circ}\right)=\sin \theta, 0^{\circ}<\left(2 \theta+54^{\circ}\right)<90^{\circ}$, then what is the value of $\frac{1}{\tan 5 \theta+\operatorname{cosec} \frac{5 \theta}{2}}$?
Question : The value of $\left(\sin 30^{\circ} \cos 60^{\circ}-\cos 30^{\circ} \sin 60^{\circ}\right)$ is equal to:
Question : $\frac{\cos 20^{\circ}}{\sin 70^{\circ}}+\frac{\cos \theta}{\sin \left(90^{\circ}-\theta\right)}=$_________,
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile