Question : $\frac{\cos 20^{\circ}}{\sin 70^{\circ}}+\frac{\cos \theta}{\sin \left(90^{\circ}-\theta\right)}=$_________,
Option 1: $-2$
Option 2: $\frac{1}{2}$
Option 3: $-\frac{1}{2}$
Option 4: $2$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $2$
Solution : We know that $\text{sin}(90^{\circ} - \theta)= \cos \theta$ $\frac{\cos 20^{\circ}}{\sin 70^{\circ}}+\frac{\cos \theta}{\sin \left(90^{\circ}-\theta\right)}$ = $\frac{\cos 20^{\circ}}{\sin (90^{\circ}-20^{\circ})}+\frac{\cos \theta}{\cos \theta}$ = $\frac{\cos 20^{\circ}}{\cos (20^{\circ})}+\frac{\cos \theta}{\cos \theta}$ = 1 + 1 = 2 Hence, the correct answer is $2$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : The expression $\frac{\left(1-2 \sin ^2 \theta \cos ^2 \theta\right)(\cot \theta+1) \cos \theta}{\left(\sin ^4 \theta+\cos ^4 \theta\right)(1+\tan \theta) \operatorname{cosec} \theta}-1,0^{\circ}<\theta<90^{\circ}$, equals:
Question : If $\left(\frac{\cos A}{1-\sin A}\right)+\left(\frac{\cos A}{1+\sin A}\right)=4$, then what will be the value of $A$? $\left(0^{\circ}<\theta<90^{\circ}\right)$
Question : $\cos \left(30^{\circ}+\theta\right)-\sin \left(60^{\circ}-\theta\right)=$ _____________.
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : Let $0^{\circ}<\theta<90^{\circ}$, $\left(1+\cot ^2 \theta\right)\left(1+\tan ^2 \theta\right) × (\sin \theta-\operatorname{cosec} \theta)(\cos \theta-\sec \theta)$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile