Question : $1.\overline{2} \times 0.\overline{03}$ =
Option 1: $0.\overline{04}$
Option 2: $0.0\overline{36}$
Option 3: $1.\overline{13}$
Option 4: $0.\overline{037}$
Correct Answer: $0.\overline{037}$
Solution : Given: $1.\overline{2} \times 0.\overline{03}$ Fraction form of $1.\overline{2}= \left (1+\frac{2}{9} \right )=\frac{11}{9}$ Fraction form of $0.\overline{03}=\frac{3}{99} =\frac{1}{33}$ Now, $1.\overline{2} \times 0.\overline{03}=\frac{11}{9} \times \frac{1}{33}=\frac{1}{27}=\frac{1 \times37}{27 \times 37}=\frac{37}{999}=0.\overline{037}$ Hence, the correct answer is $0.\overline{037}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : $\left (0.\overline{11} + 0.\overline{22} \right) × 3$ is equal to:
Question : The difference of $5.\overline{76}$ and $2.\overline{3}$ is:
Question : The value of $\frac{1 \frac{1}{2} \div 3 \frac{1}{4}+\frac{1}{2} \div \frac{13}{14}+\frac{1}{5}}{\frac{1}{5} \times 3 \frac{1}{2}-\frac{1}{3} \div 1 \frac{3}{4} \times 3 \frac{1}{2}}$ is:
Question : What is the simplified value of $\left(1-\frac{1}{4-\frac{2}{1+\frac{1}{\frac{1}{3}+2}}}\right) \times \frac{15}{16} \div \frac{2}{3}$ of $2 \frac{1}{4}-\frac{3+4}{3^3+4^3}$
Question : In a triangle ABC, AD, BE, and CF are three medians. The perimeter of ABC is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile