Question : $\frac{{\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}}}{\sqrt[3]{8}}=?$
Option 1: $4$
Option 2: $2$
Option 3: $8$
Option 4: $\frac{1}{2}$
Correct Answer: $2$
Solution : Given: $\frac{{\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}}}{\sqrt[3]{8}}$ $=\frac{{\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+15}}}}}}{2}$ $= \frac{{\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{169}}}}}}{2}$ $= \frac{{\sqrt{10+\sqrt{25+\sqrt{108+13}}}}}{2}$ $= \frac{{\sqrt{10+\sqrt{25+\sqrt{121}}}}}{2}$ $= \frac{{\sqrt{10+\sqrt{25+11}}}}{2}$ $=\frac{{\sqrt{10+\sqrt{36}}}}{2}$ $= \frac{{\sqrt{10+6}}}{2}$ $=\frac{{\sqrt{16}}}{2}$ $= \frac{4}{2}$ $= 2$ Hence, the correct answer is $2$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Question : $\sqrt{1\frac{1}{4}×\frac{64}{125}×1.44}$ is equal to:
Question : Given that A and B are second quadrant angles, $\sin A = \frac{1}{3}$ and $\sin B = \frac{1}{5}$, then find the value of $\cos(A-B)$.
Question : The value of $\frac{2}{3} \div \frac{3}{10}$ of $\frac{4}{9}-\frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15}-\frac{3}{4}+\frac{3}{4} \div \frac{1}{2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile