Question : A consumer's utility function is $U=X Y$. If the consumer is currently consuming $\mathrm{X}=5$ and $\mathrm{Y}=4$, what is the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$ ?
Option 1: 4/5
Option 2: 5/4
Option 3: 20/16
Option 4: 16/20
Correct Answer: 4/5
Solution : The correct answer is (a) $4 / 5$
To calculate the marginal rate of substitution (MRS) of X for Y, we need to find the ratio of the marginal utility of $\mathrm{X}$ to the marginal utility of $\mathrm{Y}$.
In this case, the utility function is $\mathrm{U}=\mathrm{XY}$. To find the marginal utility of $\mathrm{X}$ (MUx), we differentiate the utility function with respect to $\mathrm{X}$, holding $\mathrm{Y}$ constant: $ \mathrm{MUx}=\partial \mathrm{U} / \partial \mathrm{X}=\mathrm{Y} $
To find the marginal utility of $\mathrm{Y}$ (MUy), we differentiate the utility function with respect to $\mathrm{Y}$, holding $\mathrm{X}$ constant: $ \mathrm{MUy}=\partial \mathrm{U} / \partial \mathrm{Y}=\mathrm{X} $
Substituting the given values $\mathrm{X}=5$ and $\mathrm{Y}=4$, we get: $ \begin{aligned} & \operatorname{MUx}=\mathrm{Y}=4 \\ & \mathrm{MUy}=\mathrm{X}=5 \end{aligned} $
The MRS of $\mathrm{X}$ for $\mathrm{Y}$ is the ratio of MUx to MUy: $ \operatorname{MRS}=\mathrm{MUx} / \mathrm{MUy}=4 / 5 $
Question : A consumer's utility function is $U=X Y$. If the consumer is currently consuming $\mathrm{X}=4$ and $\mathrm{Y}=5$, what is the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$ ?
Question : A consumer's utility function is $\mathrm{U}=\mathrm{X}^{\wedge} 2+\mathrm{Y}^{\wedge} 2$. If the consumer is currently consuming $X=3$ and $Y=4$, what is the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$ ?
Question : A consumer's utility function is $U=X Y$. If the consumer is currently consuming $X=4$ and $Y=5$, what is the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$ ?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile